Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37498175

RESUMEN

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Asunto(s)
Neuronas Motoras , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Neuronas Motoras/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patología , Terapia Genética , Modelos Animales de Enfermedad , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
Hum Mol Genet ; 28(21): 3515-3527, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397869

RESUMEN

Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on ß-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.


Asunto(s)
Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/metabolismo , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/genética , Masculino , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Miocardio/metabolismo
3.
Neurosci Insights ; 15: 2633105520914301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32285042

RESUMEN

Most cases of spinal muscular atrophy are caused by functional loss of the survival of motor neuron 1 (SMN1) gene, while less than 5% of cases are attributed to genes other than SMN. Mutations in LMNA, the lamin A/C encoding gene, cause an adult form of spinal muscular atrophy (SMA), and in our recent work, we highlight a role for lamin A/C in SMN-related SMA pathways. Here, we discuss this apparent molecular crosstalk between different types of SMA in context with previous work, showing that dysregulation of proteins produced by other SMA-causing genes, including UBE1, GARS, and SETX, are also implicated in SMN-related SMA pathways. The perturbation of UBE1, GARS, and lamin A/C help explain mechanisms of tissue-specific pathology in SMA, and we propose Wnt/ß-catenin signalling as a common molecular pathway on which they each converge. Therapeutic strategies directed at these proteins, or their convergent pathways, may therefore offer a new approach to targeting tissue-specific pathology in SMN-related SMA.

4.
Brain Sci ; 8(12)2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518112

RESUMEN

Unravelling the complex molecular pathways responsible for motor neuron degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) remains a persistent challenge. Interest is growing in the potential molecular similarities between these two diseases, with the hope of better understanding disease pathology for the guidance of therapeutic development. The aim of this study was to conduct a comparative analysis of published proteomic studies of ALS and SMA, seeking commonly dysregulated molecules to be prioritized as future therapeutic targets. Fifteen proteins were found to be differentially expressed in two or more proteomic studies of both ALS and SMA, and bioinformatics analysis identified over-representation of proteins known to associate in vesicles and molecular pathways, including metabolism of proteins and vesicle-mediated transport-both of which converge on endoplasmic reticulum (ER)-Golgi trafficking processes. Calreticulin, a calcium-binding chaperone found in the ER, was associated with both pathways and we independently confirm that its expression was decreased in spinal cords from SMA and increased in spinal cords from ALS mice. Together, these findings offer significant insights into potential common targets that may help to guide the development of new therapies for both diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA