RESUMEN
A wide variety of biological processes including differentiation, regeneration, and cancer progression are regulated by shedding of membrane-anchored proteins. One of the major sheddases is A Disintegrin And Metalloprotease-17 (ADAM17) whose extracellular region consists of a pro-, a catalytic, a disintegrin-, and a membrane-proximal domain (MPD) as well as a short juxtamembrane segment of 17 amino acid residues that has been named "Conserved ADAM-seventeeN Dynamic Interaction Sequence" (CANDIS). This segment is involved in substrate recognition. Key mediators of inflammation including interleukin-6 receptor (IL-6R) and tumor necrosis factor (TNF-α) are substrates of ADAM17. The shedding activity of ADAM17 is regulated by the conformation of the membrane-proximal domain preceding the CANDIS segment. Here, we show that CANDIS, besides being involved in substrate recognition, is able to interact with lipid bilayers in vitro and that this property could be involved in regulating ADAM17 shedding activity.
Asunto(s)
Proteínas ADAM/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas ADAM/análisis , Proteínas ADAM/genética , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Línea Celular , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Datos de Secuencia Molecular , Mutación , Dominios y Motivos de Interacción de Proteínas , Especificidad por SustratoRESUMEN
Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.
Asunto(s)
Proteínas ADAM/metabolismo , Queratinocitos/efectos de los fármacos , Meliteno/farmacología , Receptores Purinérgicos P2X7/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Adenosina Trifosfato/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Western Blotting , Cadherinas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/citología , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Fosforilación/efectos de los fármacos , Receptores Purinérgicos P2X7/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Células Sf9 , Relación Estructura-Actividad , Proteínas Wnt/genéticaRESUMEN
ADAM17, prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Several of these play central roles in oncogenesis and inflammation, yet despite its importance, the mechanism by which ADAM17 is activated is not fully understood. We recently presented evidence that surface exposure of phosphatidylserine (PS) is the penultimate event required for sheddase activation, which occurs upon binding of a membrane-proximal, cationic binding motif to the anionic phospholipid headgroup. Here, we show that mutagenesis of the 3 amino acids constituting the PS-binding motif leads to embryonic lethality in mice. Heterozygotes showed no abnormalities. Primary hepatocytes and fibroblasts were analysed and found to express the mutant protease on the cell surface. However, PMA-stimulated release of ADAM17 substrates was completely abolished. The results directly support the novel concept of transiently externalised PS as essential trigger of extracellular protease function in vivo.
Asunto(s)
Proteína ADAM17/química , Proteína ADAM17/genética , Mutación , Fosfatidilserinas/metabolismo , Proteína ADAM17/metabolismo , Animales , Sitios de Unión , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genes Letales , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Cultivo Primario de Células , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologíaRESUMEN
Wnts are a family of 19 extracellular ligands that regulate cell fate, proliferation, and migration during metazoan embryogenesis and throughout adulthood. Wnts are acylated post-translationally at a conserved serine and bind the extracellular cysteine-rich domain (CRD) of Frizzled (FZD) seven-pass transmembrane receptors. Although crystal structures suggest that acylation is essential for Wnt binding to FZDs, we show here that several Wnts can promote signaling in Xenopus laevis and Danio rerio embryos, as well as in an in vitro cell culture model, without acylation. The non-acylated Wnts are expressed at levels similar to wild-type counterparts and retain CRD binding. By contrast, we find that certain other Wnts do require acylation for biological activity in Xenopus embryos, although not necessarily for FZD binding. Our data argue that acylation dependence of Wnt activity is context specific. They further suggest that acylation may underlie aspects of ligand-receptor selectivity and/or control other aspects of Wnt function.
Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Acilación , Animales , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Dysregulation of the disintegrin-metalloproteinase ADAM10 may contribute to the development of diseases including tumorigenesis and Alzheimer's disease. The mechanisms underlying ADAM10 sheddase activation are incompletely understood. Here, we show that transient exposure of the negatively charged phospholipid phosphatidylserine (PS) is necessarily required. The soluble PS headgroup was found to act as competitive inhibitor of substrate cleavage. Overexpression of the Ca2+-dependent phospholipid scramblase Anoctamin-6 (ANO6) led to increased PS externalization and substrate release. Transfection with a constitutively active form of ANO6 resulted in maximum sheddase activity in the absence of any stimulus. Calcium-dependent ADAM10 activation could not be induced in lymphocytes of patients with Scott syndrome harbouring a missense mutation in ANO6. A putative PS-binding motif was identified in the conserved stalk region. Replacement of this motif resulted in strong reduction of sheddase activity. In conjunction with the recently described 3D structure of the ADAM10 extracellular domain, a model is advanced to explain how surface-exposed PS triggers ADAM10 sheddase function.
Asunto(s)
Proteína ADAM10/metabolismo , Membrana Celular/metabolismo , Activación Enzimática , Proteína ADAM10/química , Secuencia de Aminoácidos , Animales , Anoctaminas/metabolismo , Biomarcadores , Células COS , Línea Celular , Chlorocebus aethiops , Eritrocitos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Fosfoserina/metabolismo , Conejos , Relación Estructura-ActividadRESUMEN
ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates including TGF-alpha, Amphiregulin (AREG) and TNF-Receptor 1 (TNFR1). We recently presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. Anoctamin-6 (ANO6) has Ca2+-dependent phospholipid scramblase activity and it followed that the functions of ANO6 and ADAM17 might be linked. We report that overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS-exposure that was indeed accompanied by enhanced release of AREG and TGF-alpha. The effect was not observed when cells were treated with the PKC-dependent ADAM17 activator PMA. Transformation of cells with a constitutively active ANO6 mutant led to spontaneous PS-exposure and to the release of ADAM17-substrates in the absence of any stimuli. Inhibitor experiments indicated that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the spectrum of participating metalloproteinases. In complementary experiments, siRNA-mediated downregulation of ANO6 was shown to decrease ionophore-mediated release of TNFR1 in human umbilical vein endothelial cells (HUVECs). We conclude that ANO6, by virtue of its scramblase activity, may play a role as an important regulator of the ADAM-network in the plasma membrane.
Asunto(s)
Proteínas ADAM/metabolismo , Anoctaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Proteína ADAM17/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ionomicina/farmacología , Modelos Biológicos , Mutación , Factor de Crecimiento Transformador alfa/metabolismoRESUMEN
ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases. The latter are also characterized by elevated plasma and tissue levels of extracellular sphingomyelinase (SMase). Whether the SMase affects ADAM activity and thus endothelial cell function has not been addressed to date. Here, we analyzed the effect of SMase on ADAM17-mediated shedding in COS7 cells and in human umbilical vein endothelial cells (HUVECs). Exposure to SMase significantly increased ADAM17-mediated release of alkaline-phosphatase (AP)-tagged TGF-α in COS7 cells and shedding of endogenously expressed TNFR1 in HUVECs. We previously presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase function. We found that SMase treatment led to PS externalization in both cell types. Transient non-apoptotic PS exposure is often mediated by Ca2+-dependent phospholipid scramblases. Accordingly, the Ca2+-chelator EGTA markedly reduced the breakdown of phospholipid asymmetry and shedding of TGF-α and TNFR1. Moreover, sheddase activity was significantly diminished in the presence of the competing PS-headgroup OPLS. SMase-stimulated TNFR1 shedding strikingly diminished TNF-α-induced signalling cascades and endothelial cell death. Taken together, our data suggest that SMase activity might act as protective factor for endothelial cells in cardiovascular diseases.
RESUMEN
ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.
Asunto(s)
Proteína ADAM17/metabolismo , Fosfatidilserinas/metabolismo , Proteína ADAM17/química , Proteína ADAM17/deficiencia , Proteína ADAM17/genética , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/genética , Línea Celular , Activación Enzimática , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Meliteno/farmacología , Ratones , Ratones Noqueados , Modelos Biológicos , Dominios Proteicos , Especificidad por SustratoRESUMEN
Increased vascular permeability is the hallmark of inflammation. Here, we describe three methods to assess vascular permeability in cell culture: (1) Impedance measurements of endothelial cell monolayers that allow to monitor changes in cell shape in real time. (2) Diffusion of fluorescently labeled dextran across endothelial cell monolayers to identify openings large enough for bulky molecules. (3) Transmigration of neutrophils through confluent endothelial cell monolayers to study one major process that increases endothelial permeability in inflammation.