Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501922

RESUMEN

The photon counting detector (PCD) in computed tomography (CT) can count the number of incoming photons in order to obtain energy information for photons corresponding to user-defined thresholds. Research on the extraction of effective atomic number (EAN) and relative electron density (RED) using dual-energy CT (DECT) is currently underway. This study proposes a method for improving EAN and RED accuracy of tissue-equivalent materials by using PCD-CT-based stoichiometric calibration. After obtaining DECT images in energy bin (EB) and full spectrum (FS) modes for eight tissue-equivalent materials, the EAN was calculated with stoichiometric calibration. Using the EAN image, the RED image was acquired to evaluate the accuracy. The errors of both EAN and RED obtained with EB were within 4%. In particular, the accuracy of RED was higher than that of the FS method. Study results indicate that PCD-CT contributes to improving EAN and RED accuracy. Further studies will be aimed at reducing ring artifacts by pixel-correcting PCD images and improving stopping power ratio (SPR) measurements for dose calculation in particle therapy.


Asunto(s)
Electrones , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Calibración , Tomografía Computarizada por Rayos X/métodos , Fotones
2.
J Appl Clin Med Phys ; 15(2): 4556, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24710444

RESUMEN

Image-guided techniques for radiation therapy have improved the precision of radiation delivery by sparing normal tissues. Cone-beam computed tomography (CBCT) has emerged as a key technique for patient positioning and target localization in radiotherapy. Here, we investigated the imaging radiation dose delivered to radiosensitive organs of a patient during CBCT scan. The 4D extended cardiac-torso (XCAT) phantom and Geant4 Application for Tomographic Emission (GATE) Monte Carlo (MC) simulation tool were used for the study. A computed tomography dose index (CTDI) standard polymethyl methacrylate (PMMA) phantom was used to validate the MC-based dosimetric evaluation. We implemented an MC model of a clinical on-board imager integrated with the Trilogy accelerator. The MC model's accuracy was validated by comparing its weighted CTDI (CTDIw) values with those of previous studies, which revealed good agreement. We calculated the absorbed doses of various human organs at different treatment sites such as the head-and-neck, chest, abdomen, and pelvis regions, in both standard CBCT scan mode (125 kVp, 80 mA, and 25 ms) and low-dose scan mode (125 kVp, 40 mA, and 10 ms). In the former mode, the average absorbed doses of the organs in the head and neck and chest regions ranged 4.09-8.28 cGy, whereas those of the organs in the abdomen and pelvis regions were 4.30-7.48 cGy. In the latter mode, the absorbed doses of the organs in the head and neck and chest regions ranged 1.61-1.89 cGy, whereas those of the organs in the abdomen and pelvis region ranged between 0.79-1.85 cGy. The reduction in the radiation dose in the low-dose mode compared to the standard mode was about 20%, which is in good agreement with previous reports. We opine that the findings of this study would significantly facilitate decisions regarding the administration of extra imaging doses to radiosensitive organs.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Calibración , Simulación por Computador , Humanos , Método de Montecarlo , Órganos en Riesgo , Posicionamiento del Paciente , Fantasmas de Imagen , Dosis de Radiación , Radiometría/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Programas Informáticos
3.
Diagnostics (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37296714

RESUMEN

BACKGROUND: In coronary computed tomography angiography (CCTA), the main issue of image quality is noise in obese patients, blooming artifacts due to calcium and stents, high-risk coronary plaques, and radiation exposure to patients. OBJECTIVE: To compare the CCTA image quality of deep learning-based reconstruction (DLR) with that of filtered back projection (FBP) and iterative reconstruction (IR). METHODS: This was a phantom study of 90 patients who underwent CCTA. CCTA images were acquired using FBP, IR, and DLR. In the phantom study, the aortic root and the left main coronary artery in the chest phantom were simulated using a needleless syringe. The patients were classified into three groups according to their body mass index. Noise, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR) were measured for image quantification. A subjective analysis was also performed for FBP, IR, and DLR. RESULTS: According to the phantom study, DLR reduced noise by 59.8% compared to FBP and increased SNR and CNR by 121.4% and 123.6%, respectively. In a patient study, DLR reduced noise compared to FBP and IR. Furthermore, DLR increased the SNR and CNR more than FBP and IR. In terms of subjective scores, DLR was higher than FBP and IR. CONCLUSION: In both phantom and patient studies, DLR effectively reduced image noise and improved SNR and CNR. Therefore, the DLR may be useful for CCTA examinations.

4.
IEEE Trans Med Imaging ; 39(5): 1636-1645, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31751270

RESUMEN

Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization device is usually considered. These approaches, however, cannot completely resolve the motion problem. Hence, motion estimation (ME) and compensation for it have been explored as a software approach instead. In this paper, adopting the latter approach, we propose a head motion correction algorithm in helical CT scanning, based on filtered backprojection (FBP). For the motion correction, we first introduce a new motion-compensated (MC) reconstruction scheme based on FBP, which is applicable to helical scanning. We then estimate the head motion parameters by using an iterative nonlinear optimization algorithm, or the L-BFGS. Note here that an objective function for the optimization is defined on reconstructed images in each iteration, which are obtained by using the proposed MC reconstruction scheme. Using the estimated motion parameters, we then obtain the final MC reconstructed image. Using numerical and physical phantom datasets along with simulated head motions, we demonstrate that the proposed algorithm can provide significantly improved quality to MC reconstructed images by alleviating motion artifacts.


Asunto(s)
Artefactos , Cabeza , Algoritmos , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Fantasmas de Imagen , Tomografía Computarizada Espiral
5.
PLoS One ; 13(2): e0192933, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447260

RESUMEN

To reduce the radiation dose given to patients, a tube current modulation (TCM) method has been widely used in diagnostic CT systems. However, the TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate if a TCM method would be desirable in a kV-CBCT system for image-guided radiation therapy (IGRT) or not. We have developed an attenuation-based TCM method using prior knowledge from planning CT images of patients. The TCM method can provide optimized dose reductions without degrading image quality for kV-CBCT imaging. Here, we investigate whether or not our suggested TCM method is desirable to use in kV-CBCT systems to confirm and revise the exact position of a patient for IGRT. Patients go through diagnostic CT scans for RT planning; therefore, using information from prior CT images can enable estimations of the total X-ray attenuation through a patient's body in a CBCT setting for radiation treatment. Having this planning CT image allows to use the proposed TCM method in RT. The proposed TCM method provides a minimal amount of current for each projection, as well as total current, required to reconstruct the current modulated CBCT image with an image quality similar to that of CBCT. After applying a calculated TCM current for each projection, projection images were acquired and the current modulated CBCT image was reconstructed using a FDK algorithm. To validate the proposed approach, we used a numerical XCAT phantom and a real ATOM phantom and evaluated the performance of the proposed method via visual and quantitative image quality metrics. The organ dose due to imaging radiation was calculated in both cases and compared using the GATE simulation toolkit. As shown in the quantitative evaluation, normalized noise and SSIM values of the TCM were similar to those of conventional CBCT images. In addition, the proposed TCM method yielded comparable image quality to that of conventional CBCT images for both simulations and experimental studies as organ doses were decreased. We have successfully demonstrated the feasibility and dosimetric merit of a prototypical TCM method for kV-CBCT via simulations and experimental study. The results indicate that the proposed TCM method and overall framework can be a viable option for CBCT imaging that utilizes an optimal dose reduction without degrading image quality. Thus, this method reduces the probability for side effects due to radiation exposure.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Dosis de Radiación , Abdomen/diagnóstico por imagen , Simulación por Computador , Tomografía Computarizada de Haz Cónico/instrumentación , Estudios de Factibilidad , Humanos , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Radioterapia Guiada por Imagen/métodos
6.
Radiat Prot Dosimetry ; 175(2): 194-200, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765832

RESUMEN

This study investigates dose distribution due to kV cone-beam computed tomography (CBCT) for the patients undergoing CBCT-based image-guided radiation therapy (IGRT). The kV-CBCT provides an efficient image-guidance tool for acquiring the latest volumetric image of a patient's anatomy, and has been being routinely used in clinics for an accurate treatment setup. Imaging radiation doses resulting from six different acquisition protocols of the on-board imager (OBI) were calculated using a Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation toolkit, and the absorbed doses by various organs were analyzed for the adult and pediatric numerical XCAT phantoms in this study. The calculated organ doses range from 0.1 to 24.1 mGy in the adult phantom, and from 0.1 to 36.8 mGy in the pediatric one. The imaging organ doses to the pediatric phantom turn out to be consistently higher than those to the adult phantom. It is believed that our results would provide reliable data to the clinicians for their making better decisions on CBCT scanning options and would also provide a platform for developing a new kV-CBCT scanning protocol in conjunction with a low-dose capability.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radioterapia Guiada por Imagen , Humanos , Método de Montecarlo , Fantasmas de Imagen
7.
Healthc Inform Res ; 22(4): 316-325, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27895964

RESUMEN

OBJECTIVES: With the increased use of computed tomography (CT) in clinics, dose reduction is the most important feature people seek when considering new CT techniques or applications. We developed an intensity-weighted region-of-interest (IWROI) imaging method in an exact half-fan geometry to reduce the imaging radiation dose to patients in cone-beam CT (CBCT) for image-guided radiation therapy (IGRT). While dose reduction is highly desirable, preserving the high-quality images of the ROI is also important for target localization in IGRT. METHODS: An intensity-weighting (IW) filter made of copper was mounted in place of a bowtie filter on the X-ray tube unit of an on-board imager (OBI) system such that the filter can substantially reduce radiation exposure to the outer ROI. In addition to mounting the IW filter, the lead-blade collimation of the OBI was adjusted to produce an exact half-fan scanning geometry for a further reduction of the radiation dose. The chord-based rebinned backprojection-filtration (BPF) algorithm in circular CBCT was implemented for image reconstruction, and a humanoid pelvis phantom was used for the IWROI imaging experiment. RESULTS: The IWROI image of the phantom was successfully reconstructed after beam-quality correction, and it was registered to the reference image within an acceptable level of tolerance. Dosimetric measurements revealed that the dose is reduced by approximately 61% in the inner ROI and by 73% in the outer ROI compared to the conventional bowtie filter-based half-fan scan. CONCLUSIONS: The IWROI method substantially reduces the imaging radiation dose and provides reconstructed images with an acceptable level of quality for patient setup and target localization. The proposed half-fan-based IWROI imaging technique can add a valuable option to CBCT in IGRT applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA