Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Geophys Res Lett ; 44(1): 374-382, 2017 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-28356606

RESUMEN

The recent hiatus in global-mean surface temperature warming was characterized by a Eurasian winter cooling trend, and the cause(s) for this cooling is unclear. Here we show that the observed hiatus in Eurasian warming was associated with a recent trend toward weakened stratospheric polar vortices. Specifically, by calculating the change in Eurasian surface air temperature associated with a given vortex weakening, we demonstrate that the recent trend toward weakened polar vortices reduced the anticipated Eurasian warming due to increasing greenhouse gas concentrations. Those model integrations whose stratospheric vortex evolution most closely matches that in reanalysis data also simulate a hiatus. While it is unclear whether the recent weakening of the midwinter stratospheric polar vortex was forced, a properly configured model can simulate substantial deviations of the polar vortex on decadal timescales and hence such hiatus events, implying that similar hiatus events may recur even as greenhouse gas concentrations rise.

2.
Nat Commun ; 14(1): 4088, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429838

RESUMEN

The underlying mechanism that couples the Quasi-Biennial Oscillation (QBO) and the Madden-Julian oscillation (MJO) has remained elusive, challenging our understanding of both phenomena. A popular hypothesis about the QBO-MJO connection is that the vertical extent of MJO convection is strongly modulated by the QBO. However, this hypothesis has not been verified observationally. Here we show that the cloud-top pressure and brightness temperature of deep convection and anvil clouds are systematically lower in the easterly QBO (EQBO) winters than in the westerly QBO (WQBO) winters, indicating that the vertical growth of deep convective systems within MJO envelopes is facilitated by the EQBO mean state. Moreover, the deeper clouds during EQBO winters are more effective at reducing longwave radiation escaping to space and thereby enhancing longwave cloud-radiative feedback within MJO envelopes. Our results provide robust observational evidence of the enhanced MJO activity during EQBO winters by mean state changes induced by the QBO.

3.
Sci Adv ; 9(30): eadg1801, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494441

RESUMEN

A poleward shift of the Hadley cell (HC) edge in a warming climate, which contributes to the expansion of drought-prone subtropical regions, has been widely documented. The question addressed here is whether this shift is reversible with CO2 removal. By conducting large-ensemble experiments where CO2 concentrations are systematically increased and then decreased to the present-day level, we show that the poleward-shifted HC edge in a warming climate does not return to its present-day state when CO2 concentrations are reduced. While the Southern Hemisphere HC edge remains poleward of its present-day state, the Northern Hemisphere HC edge ends up farther equatorward of its present-day state. Such hemispherically asymmetric HC edge changes are closely associated with the changes in vertical wind shear in the subtropical atmosphere, which result from the long adjustment time of the ocean response to CO2 removal. Our findings suggest that CO2 removal may not guarantee the recovery of the subtropical dryness associated with the HC changes.

4.
Nat Commun ; 13(1): 5580, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151094

RESUMEN

Understanding air pollution in East Asia is of great importance given its high population density and serious air pollution problems during winter. Here, we show that the day-to-day variability of East Asia air pollution, during the recent 21-year winters, is remotely influenced by the Madden-Julian Oscillation (MJO), a dominant mode of subseasonal variability in the tropics. In particular, the concentration of particulate matter with aerodynamic diameter less than 10 micron (PM10) becomes significantly high when the tropical convections are suppressed over the Indian Ocean (MJO phase 5-6), and becomes significantly low when those convections are enhanced (MJO phase 1-2). The station-averaged PM10 difference between these two MJO phases reaches up to 15% of daily PM10 variability, indicating that MJO is partly responsible for wintertime PM10 variability in East Asia. This finding helps to better understanding the wintertime PM10 variability in East Asia and monitoring high PM10 days.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asia Oriental , Océano Índico , Material Particulado/análisis , Estaciones del Año
5.
Sci Bull (Beijing) ; 67(2): 213-222, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546014

RESUMEN

Understanding the regional hydrological response to varying CO2 concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO2 pathway, we used the Community Earth System Model (CESM) with 28 ensemble members in which the CO2 concentration increases at a rate of 1% per year until its quadrupling peak, i.e., 1468 ppm (ramp-up period), followed by a decrease of 1% per year until the present-day climate conditions, i.e., 367 ppm (ramp-down period). Although the CO2 concentration change is symmetric in time, the amount of summer rainfall anomaly in East Asia is increased 42% during a ramp-down period than that during a ramp-up period when the two periods of the same CO2 concentration are compared. This asymmetrical rainfall response is mainly due to an enhanced El Niño-like warming pattern as well as its associated increase in the sea surface temperature in the western North Pacific during a ramp-down period. These sea surface temperature patterns enhance the atmospheric teleconnections and the local meridional circulations around East Asia, resulting in more rainfall over East Asia during a ramp-down period. This result implies that the removal of CO2 does not guarantee the return of regional rainfall to the previous climate state with the same CO2 concentration.


Asunto(s)
Dióxido de Carbono , El Niño Oscilación del Sur , Estaciones del Año , Asia Oriental , Temperatura
6.
Sci Rep ; 12(1): 11569, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798931

RESUMEN

To investigate the response of the general circulation and global transport of heat through both atmosphere and ocean to two-types of carbon dioxide removal scenario, we performed an earth system model experiment in which we imposed a pulse-type quadrupling of CO2 forcing for 50 years and a gradual peak-and-decline of four-time CO2 forcing. We found that the results from two experiments are qualitatively similar to each other. During the forcing-on period, a dominant warming in the upper troposphere over the tropics and on the surface at high latitudes led to a slowdown in the Hadley circulation, but the poleward atmospheric energy transport was enhanced due to an increase in specific humidity. This counteracted the reduction in poleward oceanic energy transport owing to the suppression of the meridional overturning circulation in both Hemispheres. After returning the original CO2 level, the hemispheric thermal contrast was reversed, causing a southward shift of the intertropical convergence zone. To reduce the hemispheric thermal contrast, the northward energy transports in the atmosphere and ocean surface were enhanced while further weakening of the global-scale Atlantic meridional overturning circulation led to southward energy transport in the deep ocean.

7.
Sci Adv ; 8(27): eabm7229, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857451

RESUMEN

In 2016, the westerly quasi-biennial oscillation (WQBO) in the equatorial stratosphere was unprecedentedly disrupted by westward forcing near 40 hPa; this was followed by another disruption in 2020. Strong extratropical Rossby waves propagating toward the tropics were considered the main cause of the disruptions, but why the zonal wind is reversed only in the middle of the WQBO remains unclear. Here, we show that strong westerly winds in the equatorial lower stratosphere (70 to 100 hPa) help to disrupt the WQBO by hindering the wind reversal at its base. They also help equatorial westward waves propagate further upward, increasing the negative forcing at around 40 hPa that drives the QBO disruptions. Tropical westerly winds have been increasing in the past and are projected to increase in a warmer climate. These background wind changes may allow more frequent QBO disruptions in the future, leading to less predictability in atmospheric weather and climate systems.

8.
Sci Rep ; 11(1): 4081, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603052

RESUMEN

The subseasonal relationship between Arctic and Eurasian surface air temperature (SAT) is re-examined using reanalysis data. Consistent with previous studies, a significant negative correlation is observed in cold season from November to February, but with a local minimum in late December. This relationship is dominated not only by the warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) pattern. The budget analyses reveal that both WACE and CAWE patterns are primarily driven by the temperature advection associated with sea level pressure anomaly over the Ural region, partly cancelled by the diabatic heating. It is further found that, although the anticyclonic anomaly of WACE pattern mostly represents the Ural blocking, about 20% of WACE cases are associated with non-blocking high pressure systems. This result indicates that the Ural blocking is not a necessary condition for the WACE pattern, highlighting the importance of transient weather systems in the subseasonal Arctic-Eurasian SAT co-variability.

9.
Materials (Basel) ; 13(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326223

RESUMEN

In this study, an investigation is carried out to evaluate and compare the material and physical properties of Grade 5 Titanium alloy (Ti6Al4V G5) samples of three different impeller manufacturers. The study aims to identify the efficient impeller core material from different Ti6Al4V G5 manufacturers. Ultrasonic fatigue test for Ti6Al4V samples of 100 horsepower (hp) centrifugal compressor impeller parts is performed before and after heat treatment. The effect of microstructure on Very High Cycle Fatigue (VHCF) behavior of Ti6Al4V is also analyzed and discussed in detail. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) observation are carried out to investigate the microstructure of different Ti6Al4V material samples. The dynamic elastic properties are measured by the Impulse Excitation Technique (IET) at room temperature. The fracture behavior of the tensile specimens is analyzed by SEM. Post-heat-treatment analysis of Ti6Al4V is also carried out and presented which affects the grain size of the material sample and thus considerable effect in the mechanical properties. Chemical composition investigation of Ti6Al4V using SEM and Energy Dispersive X-ray Spectroscopy (EDS) also included in this study.

10.
Sci Adv ; 5(12): eaax8203, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844667

RESUMEN

The Holocene thermal maximum was characterized by strong summer solar heating that substantially increased the summertime temperature relative to preindustrial climate. However, the summer warming was compensated by weaker winter insolation, and the annual mean temperature of the Holocene thermal maximum remains ambiguous. Using multimodel mid-Holocene simulations, we show that the annual mean Northern Hemisphere temperature is strongly correlated with the degree of Arctic amplification and sea ice loss. Additional model experiments show that the summer Arctic sea ice loss persists into winter and increases the mid- and high-latitude temperatures. These results are evaluated against four proxy datasets to verify that the annual mean northern high-latitude temperature during the mid-Holocene was warmer than the preindustrial climate, because of the seasonally rectified temperature increase driven by the Arctic amplification. This study offers a resolution to the "Holocene temperature conundrum", a well-known discrepancy between paleo-proxies and climate model simulations of Holocene thermal maximum.

11.
Nat Commun ; 9(1): 4571, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385755

RESUMEN

Mid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation. In contrast, over East Asia, sea ice loss slightly decreases the temperature in early winter. These temperature responses are associated with the weakening of mid-high latitude westerlies and polar stratospheric warming. Sea ice loss also weakens the Atlantic meridional overturning circulation, although this weakening signal diminishes after 150-200 years of model integration. These results suggest that mid-Holocene climate changes should be interpreted in terms of both Arctic sea ice cover and insolation forcing.

12.
Curr Clim Change Rep ; 4(3): 287-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30956938

RESUMEN

PURPOSE OF REVIEW: Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence by models. This paper reviews the state of knowledge regarding blocking under climate change, with the aim of providing an overview for those working in related fields. RECENT FINDINGS: Several avenues have been identified by which blocking can be improved in numerical models, though a fully reliable simulation remains elusive (at least, beyond a few days lead time). Models are therefore starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections. There are still major uncertainties regarding the processes most important to the onset, maintenance and decay of blocking and advances in our understanding of atmospheric dynamics, for example in the role of diabatic processes, continue to inform the modelling and prediction efforts. SUMMARY: The term 'blocking' covers a diverse array of synoptic patterns, and hence a bewildering range of indices has been developed to identify events. Results are hence not considered fully trustworthy until they have been found using several different methods. Examples of such robust results are the underestimation of blocking by models, and an overall decline in future occurrence, albeit with a complex regional and seasonal variation. In contrast, hemispheric trends in blocking over the recent historical period are not supported by different methods, and natural variability will likely dominate regional variations over the next few decades.

13.
Nat Commun ; 9(1): 206, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335470

RESUMEN

The Montreal Protocol has succeeded in limiting major ozone-depleting substance emissions, and consequently stratospheric ozone concentrations are expected to recover this century. However, there is a large uncertainty in the rate of regional ozone recovery in the Northern Hemisphere. Here we identify a Eurasia-North America dipole mode in the total column ozone over the Northern Hemisphere, showing negative and positive total column ozone anomaly centres over Eurasia and North America, respectively. The positive trend of this mode explains an enhanced total column ozone decline over the Eurasian continent in the past three decades, which is closely related to the polar vortex shift towards Eurasia. Multiple chemistry-climate-model simulations indicate that the positive Eurasia-North America dipole trend in late winter is likely to continue in the near future. Our findings suggest that the anticipated ozone recovery in late winter will be sensitive not only to the ozone-depleting substance decline but also to the polar vortex changes, and could be substantially delayed in some regions of the Northern Hemisphere extratropics.

14.
15.
Sci Rep ; 7(1): 4710, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680054

RESUMEN

Recent changes of surface particulate matter (PM) concentration in the Seoul Metropolitan Area (SMA), South Korea, are puzzling. The long-term trend of surface PM concentration in the SMA declined in the 2000s, but since 2012 its concentrations have tended to incline, which is coincident with frequent severe hazes in South Korea. This increase puts the Korean government's emission reduction efforts in jeopardy. This study reports that interannual variation of surface PM concentration in South Korea is closely linked with the interannual variations of wind speed. A 12-year (2004-2015) regional air quality simulation was conducted over East Asia (27-km) and over South Korea (9-km) to assess the impact of meteorology under constant anthropogenic emissions. Simulated PM concentrations show a strong negative correlation (i.e. R = -0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuation of regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012.

16.
Nat Commun ; 5: 4646, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25181390

RESUMEN

Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA