Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomech Eng ; 144(10)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35445243

RESUMEN

Accurate human tissue biomechanical data represents a critical knowledge gap that will help facilitate the advancement of new medical devices, patient-specific predictive models, and training simulators. Tissues related to the human airway are a top priority, as airway medical procedures are common and critical. Placement of a surgical airway, though less common, is often done in an emergent (cricothyrotomy) or urgent (tracheotomy) fashion. This study is the first to report relevant puncture force data for the human cricothyroid membrane and tracheal annular ligaments. Puncture forces of the cricothyroid membrane and tracheal annular ligaments were collected from 39 and 42 excised human donor tracheas, respectively, with a mechanized load frame holding various surgical tools. The average puncture force of the cricothyroid membrane using an 11 blade scalpel was 1.01 ± 0.36 N, and the average puncture force of the tracheal annular ligaments using a 16 gauge needle was 0.98 ± 0.34 N. This data can be used to inform medical device and airway training simulator development as puncture data of these anatomies has not been previously reported.


Asunto(s)
Tráquea , Traqueotomía , Cartílago Cricoides/cirugía , Humanos , Cuello , Punciones
2.
Sci Rep ; 14(1): 11096, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750077

RESUMEN

Skin tissue is recognized to exhibit rate-dependent mechanical behavior under various loading conditions. Here, we report that the full-thickness burn human skin exhibits rate-independent behavior under uniaxial tensile loading conditions. Mechanical properties, namely, ultimate tensile stress, ultimate tensile strain, and toughness, and parameters of Veronda-Westmann hyperelastic material law were assessed via uniaxial tensile tests. Univariate hypothesis testing yielded no significant difference (p > 0.01) in the distributions of these properties for skin samples loaded at three different rates of 0.3 mm/s, 2 mm/s, and 8 mm/s. Multivariate multiclass classification, employing a logistic regression model, failed to effectively discriminate samples loaded at the aforementioned rates, with a classification accuracy of only 40%. The median values for ultimate tensile stress, ultimate tensile strain, and toughness are computed as 1.73 MPa, 1.69, and 1.38 MPa, respectively. The findings of this study hold considerable significance for the refinement of burn care training protocols and treatment planning, shedding new light on the unique, rate-independent behavior of burn skin.


Asunto(s)
Quemaduras , Piel , Estrés Mecánico , Resistencia a la Tracción , Humanos , Fenómenos Biomecánicos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Elasticidad , Fenómenos Fisiológicos de la Piel
3.
Sci Rep ; 12(1): 4565, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296755

RESUMEN

Porcine skin is considered a de facto surrogate for human skin. However, this study shows that the mechanical characteristics of full thickness burned human skin are different from those of porcine skin. The study relies on five mechanical properties obtained from uniaxial tensile tests at loading rates relevant to surgery: two parameters of the Veronda-Westmann hyperelastic material model, ultimate tensile stress, ultimate tensile strain, and toughness of the skin samples. Univariate statistical analyses show that human and porcine skin properties are dissimilar (p < 0.01) for each loading rate. Multivariate classification involving the five mechanical properties using logistic regression can successfully separate the two skin types with a classification accuracy exceeding 95% for each loading rate individually as well as combined. The findings of this study are expected to guide the development of effective training protocols and high-fidelity simulators to train burn care providers.


Asunto(s)
Piel , Animales , Fenómenos Biomecánicos , Humanos , Estrés Mecánico , Porcinos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA