Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8014): 1118-1125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio , Germinación , Concentración Osmolar , Polen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinación/genética , Mutación , Polen/genética , Polen/metabolismo , Agua/metabolismo , Células HEK293 , Humanos , Deshidratación
2.
Nat Commun ; 15(1): 34, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167709

RESUMEN

The persistent cereal endosperm constitutes the majority of the grain volume. Dissecting the gene regulatory network underlying cereal endosperm development will facilitate yield and quality improvement of cereal crops. Here, we use single-cell transcriptomics to analyze the developing maize (Zea mays) endosperm during cell differentiation. After obtaining transcriptomic data from 17,022 single cells, we identify 12 cell clusters corresponding to five endosperm cell types and revealing complex transcriptional heterogeneity. We delineate the temporal gene-expression pattern from 6 to 7 days after pollination. We profile the genomic DNA-binding sites of 161 transcription factors differentially expressed between cell clusters and constructed a gene regulatory network by combining the single-cell transcriptomic data with the direct DNA-binding profiles, identifying 181 regulons containing genes encoding transcription factors along with their high-confidence targets, Furthermore, we map the regulons to endosperm cell clusters, identify cell-cluster-specific essential regulators, and experimentally validated three predicted key regulators. This study provides a framework for understanding cereal endosperm development and function at single-cell resolution.


Asunto(s)
Endospermo , Zea mays , Zea mays/metabolismo , Redes Reguladoras de Genes , Diferenciación Celular/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Biol Chem ; 287(53): 44109-20, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23144451

RESUMEN

PINK1, linked to familial Parkinson's disease, is known to affect mitochondrial function. Here we identified a novel regulatory role of PINK1 in the maintenance of complex IV activity and characterized a novel mechanism by which NO signaling restored complex IV deficiency in PINK1 null dopaminergic neuronal cells. In PINK1 null cells, levels of specific chaperones, including Hsp60, leucine-rich pentatricopeptide repeat-containing (LRPPRC), and Hsp90, were severely decreased. LRPPRC and Hsp90 were found to act upstream of Hsp60 to regulate complex IV activity. Specifically, knockdown of Hsp60 resulted in a decrease in complex IV activity, whereas antagonistic inhibition of Hsp90 by 17-(allylamino) geldanamycin decreased both Hsp60 and complex IV activity. In contrast, overexpression of the PINK1-interacting factor LRPPRC augmented complex IV activity by up-regulating Hsp60. A similar recovery of complex IV activity was also induced by coexpression of Hsp90 and Hsp60. Drug screening identified ginsenoside Re as a compound capable of reversing the deficit in complex IV activity in PINK1 null cells through specific increases of LRPPRC, Hsp90, and Hsp60 levels. The pharmacological effects of ginsenoside Re could be reversed by treatment of the pan-NOS inhibitor L-NG-Nitroarginine Methyl Ester (L-NAME) and could also be reproduced by low-level NO treatment. These results suggest that PINK1 regulates complex IV activity via interactions with upstream regulators of Hsp60, such as LRPPRC and Hsp90. Furthermore, they demonstrate that treatment with ginsenoside Re enhances functioning of the defective PINK1-Hsp90/LRPPRC-Hsp60-complex IV signaling axis in PINK1 null neurons by restoring NO levels, providing potential for new therapeutics targeting mitochondrial dysfunction in Parkinson's disease.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Ginsenósidos/farmacología , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/enzimología , Extractos Vegetales/farmacología , Proteínas Quinasas/deficiencia , Transducción de Señal , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/genética , Transducción de Señal/efectos de los fármacos
4.
Front Oral Biol ; 18: 1-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26599112

RESUMEN

The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage.


Asunto(s)
Adaptación Fisiológica/fisiología , Proceso Alveolar/fisiología , Ligamento Periodontal/fisiología , Técnicas de Movimiento Dental/métodos , Proceso Alveolar/citología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Fibroblastos/fisiología , Humanos , Células Madre Mesenquimatosas/fisiología , Osteoblastos/fisiología , Osteoclastos/fisiología , Ligamento Periodontal/citología
5.
Endod Topics ; 28(1): 106-117, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24976816

RESUMEN

The goal of regenerative endodontics is to restore the functions of the dental pulp-dentin complex. Two approaches are being applied toward dental pulp-dentin regeneration: cell transplantation and cell homing. The majority of previous approaches are based on cell transplantation by delivering ex vivo cultivated cells toward dental pulp or dentin regeneration. Many hurdles limit the clinical translation of cell transplantation such as the difficulty of acquiring and isolating viable cells, uncertainty of what cells or what fractions of cells to use, excessive cost of cell manipulation and transportation, and the risk of immune rejection, pathogen transmission, and tumorigenesis in associated with ex vivo cell manipulation. In contrast, cell homing relies on induced chemotaxis of endogenous cells and therefore circumvents many of the difficulties that are associated with cell transplantation. An array of proteins, peptides, and chemical compounds that are yet to be identified may orchestrate endogenous cells to regenerate dental pulp-dentin complex. Both cell transplantation and cell homing are scientifically valid approaches; however, cell homing offers a number of advantages that are compatible with the development of clinical therapies for dental pulp-dentin regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA