Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 2417-2428, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989713

RESUMEN

BACKGROUND: Hyperlipidemia is characterized by abnormally elevated blood lipids. Quinoa saponins (QS) have multiple pharmacological activities, including antitumor, bactericidal and immune-enhancing effects. However, the lipid-lowering effect and mechanisms of QS in vivo have been scarcely reported. METHODS: The effect of QS against hyperlipidemia induced by high-fat diet in rats was explored based on gut microbiota and serum non-targeted metabolomics. RESULTS: The study demonstrated that the supplementation of QS could reduce serum lipids, body weight, liver injury and inflammation. 16S rRNA sequencing demonstrated that QS mildly increased alpha-diversity, altered the overall structure of intestinal flora, decreased the relative richness of Firmicutes, the ratio of Firmicutes/Bacteroidetes (P < 0.05) and increased the relative richness of Actinobacteria, Bacteroidetes, Bifidobacterium, Roseburia and Coprococcus (P < 0.05). Simultaneously, metabolomics analysis showed that QS altered serum functional metabolites with respect to bile acid biosynthesis, arachidonic acid metabolism and taurine and hypotaurine metabolism, which were closely related to bile acid metabolism and fatty acid ß-oxidation. Furthermore, QS increased protein levels of farnesoid X receptor, peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1, which were related to the screened metabolic pathways. Spearman correlation analysis showed that there was a correlation between gut microbiota and differential metabolites. CONCLUSION: QS could prevent lipid metabolism disorders in hyperlipidemic rats, which may be closely associated with the regulation of the gut microbiota and multiple metabolic pathways. This study may provide new evidence for QS as natural active substances for the prevention of hyperlipidemia. © 2023 Society of Chemical Industry.


Asunto(s)
Chenopodium quinoa , Microbioma Gastrointestinal , Hiperlipidemias , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Chenopodium quinoa/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , ARN Ribosómico 16S , Lípidos/farmacología , Redes y Vías Metabólicas , Ácidos y Sales Biliares
2.
Ecotoxicol Environ Saf ; 264: 115429, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660532

RESUMEN

Rare ginsenosides have already been widely applied in many fields, including health food and bio-medicine. The human being can expose to rare ginsenosides directly or indirectly increasingly. However, there are few studies on the safety assessment of rare ginsenoside mixtures. In the present study, the sub-chronic toxicity of rare ginsenosides for 90 days on SD rats was performed by combining the intestinal flora analysis and urine metabonomics aiming to illustrate the safety of long-term consumption of rare ginsenosides and the potential damage for liver and intestinal. 48 adult rats were divided into four groups: control (0 mg/kg), low-dose (60 mg/kg), medium-dose (200 mg/kg), and high-dose (600 mg/kg). Rats in the high-dose group showed inflammatory changes in their livers and intestines. The strong bactericidal effect of rare ginsenosides caused intestinal flora disorder and changed the structure of intestinal flora in rats, thus inducing intestinal damage in rats. In the high-dose group, levels of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (AKP) increased significantly. As a result of the high-dose treatment, certain metabolic pathways were altered, such as vitamin B6 metabolism, methionine metabolism, glutathione metabolism, and others. These results indicated that high doses of rare ginsenosides induced liver injury by affecting the above metabolic pathways. Rare ginsenosides with no observed adverse effect level (NOAEL) were below 200 mg/kg/day in vivo. Thus, this present study provides insight into the rational use of rare ginsenosides.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Panax , Animales , Ratas , Metabolómica , Hojas de la Planta , Ratas Sprague-Dawley
3.
RSC Adv ; 13(42): 29408-29418, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37818274

RESUMEN

Quinoa saponins have outstanding activity, and there are an increasing number of extraction methods, but there are few research programs on green preparation technology. The extraction conditions of quinoa saponins with deep eutectic solvents (DESs) were optimized by single-factor experiments combined with response surface methodology. The antioxidant capacity of saponins extracted by DESs and traditional methods was evaluated by the DPPH clearance rate, iron ion chelation rate and potassium ferricyanide reducing power. The results show that the optimal DES is choline chloride: 1,2-propylene glycol (1 : 1), and its water content is 40%. The optimal extraction conditions were as follows: the solid-to-solvent ratio was 0.05 g mL-1, the extraction time was 89 min, and the extraction temperature was 75 °C. Under these conditions, the extraction of quinoa saponins by DES was more effective than the traditional extraction methods. The saponins extracted by DES and traditional methods were analyzed by UPLC-MS, and five main saponins were identified. Quantitative analysis by HPLC-UV showed that Q1 (m/z = 971) and Q2 (m/z = 809) had higher contents of saponins. In vitro antioxidant experiments showed that all DES saponin extracts showed good antioxidant capacity. This study provides new insight into the development and utilization of quinoa saponins.

4.
Carbohydr Polym ; 318: 121106, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479435

RESUMEN

The rapid development of flexible sensors has greatly increased the demand for high-performance hydrogels. However, it remains a challenge to fabricate flexible hydrogel sensors with high stretching, low hysteresis, excellent adhesion, good conductivity, sensing characteristics and bacteriostatic function in a simple way. Herein, a highly conducting double network hydrogel is presented by incorporating lithium chloride (LiCl) into the hydrogel consisting of poly (2-acrylamide-2-methylpropanesulfonic acid/acrylamide/acrylic acid) (3A) network and acetylated distarch phosphate (ADSP). The addition of ADSP not only formed hydrogen bonds with 3A to improve the toughness of the hydrogel but also plays the role of "physical cross-linking" in 3A by "anchoring" the polymer molecular chains together. Tuning the composition of the hydrogel allows the attainment of the best functions, such as high stretchability (∼770 %), ultralow hysteresis (2.2 %, ε = 100 %), excellent electrical conductivity (2.9 S/m), strain sensitivity (GF = 3.0 at 200-500 % strain) and fast response (96 ms). Based on the above performance, the 3A/ADSP/LiCl hydrogel strain sensor can repeatedly and stably detect and monitor large-scale human movements and subtle sensing signals. In addition, the 3A/ADSP/LiCl hydrogel shows a good biocompatibility and bacteriostatic ability. This work provides an effective strategy for constructing the conductive hydrogels for wearable devices and flexible sensors.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Humanos , Fosfatos , Acrilamida , Conductividad Eléctrica , Cloruro de Litio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA