Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2209838119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191190

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.


Asunto(s)
Acinetobacter baumannii , Proteínas de Escherichia coli , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Monofosfato , Factores de Elongación de Péptidos , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Virulencia
2.
PLoS Pathog ; 18(5): e1010562, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617422

RESUMEN

Quorum sensing (QS) is widely employed by bacterial cells to control gene expression in a cell density-dependent manner. A previous study revealed that anthranilic acid from Ralstonia solanacearum plays a vital role in regulating the physiology and pathogenicity of R. solanacearum. We reported here that anthranilic acid controls the important biological functions and virulence of R. solanacearum through the receptor protein RaaR, which contains helix-turn-helix (HTH) and LysR substrate binding (LysR_substrate) domains. RaaR regulates the same processes as anthranilic acid, and both are present in various bacterial species. In addition, anthranilic acid-deficient mutant phenotypes were rescued by in trans expression of RaaR. Intriguingly, we found that anthranilic acid binds to the LysR_substrate domain of RaaR with high affinity, induces allosteric conformational changes, and then enhances the binding of RaaR to the promoter DNA regions of target genes. These findings indicate that the components of the anthranilic acid signaling system are distinguished from those of the typical QS systems. Together, our work presents a unique and widely conserved signaling system that might be an important new type of cell-to-cell communication system in bacteria.


Asunto(s)
Ralstonia solanacearum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ralstonia solanacearum/genética , Virulencia/genética , ortoaminobenzoatos
3.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610405

RESUMEN

With the increase in the scale of breeding at modern pastures, the management of dairy cows has become much more challenging, and individual recognition is the key to the implementation of precision farming. Based on the need for low-cost and accurate herd management and for non-stressful and non-invasive individual recognition, we propose a vision-based automatic recognition method for dairy cow ear tags. Firstly, for the detection of cow ear tags, the lightweight Small-YOLOV5s is proposed, and then a differentiable binarization network (DBNet) combined with a convolutional recurrent neural network (CRNN) is used to achieve the recognition of the numbers on ear tags. The experimental results demonstrated notable improvements: Compared to those of YOLOV5s, Small-YOLOV5s enhanced recall by 1.5%, increased the mean average precision by 0.9%, reduced the number of model parameters by 5,447,802, and enhanced the average prediction speed for a single image by 0.5 ms. The final accuracy of the ear tag number recognition was an impressive 92.1%. Moreover, this study introduces two standardized experimental datasets specifically designed for the ear tag detection and recognition of dairy cows. These datasets will be made freely available to researchers in the global dairy cattle community with the intention of fostering intelligent advancements in the breeding industry.


Asunto(s)
Agricultura , Reconocimiento en Psicología , Animales , Femenino , Bovinos , Granjas , Industrias , Inteligencia
4.
Angew Chem Int Ed Engl ; : e202409006, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896505

RESUMEN

Proton exchange membranes with high selectivity are urgently required in energy and electronic technologies. Nafion, a state-of-the-art commercial proton exchange membrane material, faces significant challenges. It suffers from the permeation of undesirable substances, like hydrogen in fuel cells and vanadium ions in redox flow batteries, due to the unmatched sizes between its ionic domains (3~5 nm) and these substances. In this work, we present a supramolecular modification strategy that simultaneously enhances the proton conductivity and selectivity of Nafion. We employ fluoroalkyl-grafted polyoxometalate (POMs) nanoclusters as supramolecular additives to modify Nafion via co-assembly. These POMs can precisely and robustly decorate at Nafion ionic domains, with their fluoroalkyl chains anchoring into the perfluorinated matrix while their inorganic clusters stay in the ionic regions. The hybrid membranes, with continuous proton hopping sites and nanoscale steric hindrance offered by POMs, exhibit a 56% increase in proton conductivity and a 100% improvement in proton/vanadium selectivity. This leads to significantly enhanced power density and energy efficiency in fuel cells and vanadium flow batteries, respectively. These results underscore the intriguing potential of molecular cluster additives in improving the functions of ion-conducting membranes.

5.
Appl Environ Microbiol ; 89(10): e0118423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796010

RESUMEN

Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.


Asunto(s)
Burkholderia cenocepacia , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Virulencia/genética , Acil-Butirolactonas/metabolismo , Liposomas/metabolismo , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Appl Environ Microbiol ; 89(12): e0107423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032177

RESUMEN

IMPORTANCE: Shigella sonnei is a major human enteric pathogen that causes bacillary dysentery. The increasing spread of drug-resistant S. sonnei strains has caused an emergent need for the development of new antimicrobial agents against this pathogenic bacterium. In this study, we demonstrate that Stattic employs two antibacterial mechanisms against S. sonnei. It exerted both anti-virulence activity and bactericidal activity against S. sonnei, suggesting that it shows advantages over traditional antibiotics. Moreover, Stattic showed excellent synergistic effects with kanamycin, ampicillin, chloramphenicol, and gentamicin against S. sonnei. Our findings suggest that Stattic has promising potential for development as a new antibiotic or as an adjuvant to antibiotics for infections caused by S. sonnei.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Shigella sonnei , Antibacterianos/farmacología , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/microbiología , Ampicilina/farmacología , Pruebas de Sensibilidad Microbiana
7.
World J Surg Oncol ; 21(1): 191, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349737

RESUMEN

BACKGROUND: Recurrence after resection is the main factor for poor survival. The relationship between clinicopathological factors and recurrence after curative distal pancreatectomy for PDAC has rarely been reported separately. METHODS: Patients with PDAC after left­sided pancreatectomy between May 2015 and August 2021 were retrospectively identified. RESULTS: One hundred forty-one patients were included. Recurrence was observed in 97 patients (68.8%), while 44 (31.2%) patients had no recurrence. The median RFS was 8.8 months. The median OS was 24.9 months. Local recurrence was the predominant first detected recurrence site (n = 36, 37.1%), closely followed by liver recurrence (n = 35, 36.1%). Multiple recurrences occurred in 16 (16.5%) patients, peritoneal recurrence in 6 (6.2%) patients, and lung recurrence in 4 (4.1%) patients. High CA19-9 value after surgery, poor differentiation grade, and positive lymph nodes were found to be independently associated with recurrence. The patients receiving adjuvant chemotherapy had a decreased likelihood of recurrence. In the high CA19-9 value cohort, the median PFS and OS of the patients with or without chemotherapy were 8.0 VS. 5.7 months and 15.6 VS. 13.8 months, respectively. In the normal CA19-9 value cohort, there was no significant difference in PFS with or without chemotherapy (11.7 VS. 10.0 months, P = 0.147). However, OS was significantly longer in the patients with chemotherapy (26.4 VS. 13.8 months, P = 0.019). CONCLUSIONS: Tumor biologic characteristics, such as T stage, tumor differentiation and positive lymph nodes, affecting CA19-9 value after surgery are associated with patterns and timing of recurrence. Adjuvant chemotherapy significantly reduced recurrence and improved survival. Chemotherapy is strongly recommended in patients with high CA199 after surgery.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estudios Retrospectivos , Pancreatectomía/efectos adversos , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Neoplasias Pancreáticas
8.
Appl Environ Microbiol ; 88(4): e0234221, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34985987

RESUMEN

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, Burkholderiadiffusible signal factor (BDSF) (cis-2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research on this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


Asunto(s)
Burkholderia cenocepacia , Burkholderia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/metabolismo , Burkholderia cenocepacia/metabolismo , Ácidos Grasos Monoinsaturados , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Factores Supresores Inmunológicos
9.
Appl Environ Microbiol ; 87(12): e0020221, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811025

RESUMEN

Quorum-sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator, Bcal3178, controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at the transcriptional level was obviously downregulated in both the AHL-deficient and BDSF-deficient mutant strains compared to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions coregulated by the AHL and BDSF QS systems in B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen in humans that utilizes the BDSF and AHL quorum-sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator, Bcal3178 of the QS signaling network, controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes, which are regulated by the QS systems in B. cenocepacia. Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/fisiología , Percepción de Quorum , Factores de Transcripción/fisiología , Burkholderia cenocepacia/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Péptido Hidrolasas/metabolismo , Fenotipo
10.
Proc Natl Acad Sci U S A ; 114(49): 13006-13011, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158389

RESUMEN

Quorum sensing (QS) signals are used by bacteria to regulate biological functions in response to cell population densities. Cyclic diguanosine monophosphate (c-di-GMP) regulates cell functions in response to diverse environmental chemical and physical signals that bacteria perceive. In Burkholderia cenocepacia, the QS signal receptor RpfR degrades intracellular c-di-GMP when it senses the QS signal cis-2-dodecenoic acid, also called Burkholderia diffusible signal factor (BDSF), as a proxy for high cell density. However, it was unclear how this resulted in control of BDSF-regulated phenotypes. Here, we found that RpfR forms a complex with a regulator named GtrR (BCAL1536) to enhance its binding to target gene promoters under circumstances where the BDSF signal binds to RpfR to stimulate its c-di-GMP phosphodiesterase activity. In the absence of BDSF, c-di-GMP binds to the RpfR-GtrR complex and inhibits its ability to control gene expression. Mutations in rpfR and gtrR had overlapping effects on both the B. cenocepacia transcriptome and BDSF-regulated phenotypes, including motility, biofilm formation, and virulence. These results show that RpfR is a QS signal receptor that also functions as a c-di-GMP sensor. This protein thus allows B. cenocepacia to integrate information about its physical and chemical surroundings as well as its population density to control diverse biological functions including virulence. This type of QS system appears to be widely distributed in beta and gamma proteobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidad , GMP Cíclico/análogos & derivados , Ácidos Grasos Monoinsaturados/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum/genética , Animales , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/patología , Burkholderia cenocepacia/crecimiento & desarrollo , GMP Cíclico/metabolismo , Ratones , Mutación , Fenotipo , Transducción de Señal , Virulencia
11.
Mol Microbiol ; 108(1): 32-44, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363827

RESUMEN

Quorum sensing (QS) is widely utilized by bacterial pathogens to regulate biological functions and pathogenicity. Recent evidence has shown that QS is subject to regulatory cascades, especially two-component systems that often respond to environmental stimulation. At least two different types of QS systems regulate pathogenesis in Burkholderia cenocepacia. However, it remains unclear how this bacterial pathogen controls these QS systems. Here, we demonstrate a novel two-component system RqpSR (Regulating Quorum sensing and Pathogenicity), which plays an important role in modulating QS and pathogenesis in B. cenocepacia. We demonstrate strong protein-protein binding affinity between RqpS and RqpR. Mutations in rqpS and rqpR exerted overlapping effects on B. cenocepacia transcriptomes and phenotypes, including motility, biofilm formation and virulence. In trans expression of rqpR rescued the defective phenotypes in the rqpS mutant. RqpR controls target gene expression by direct binding to DNA promoters, including the cis-2-dodecenoic acid (BDSF) and N-acylhomoserine lactone (AHL) signal synthase gene promoters. These findings suggest that the RqpSR system strongly modulates physiology by forming a complicated hierarchy with QS systems. This type of two-component system appears to be widely distributed and coexists with the BDSF QS system in various bacterial species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/patogenicidad , Percepción de Quorum , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Biopelículas , Burkholderia cenocepacia/genética , Movimiento Celular , Regiones Promotoras Genéticas/genética , Unión Proteica , Eliminación de Secuencia , Transcriptoma , beta-Galactosidasa/genética
12.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770405

RESUMEN

Quorum sensing (QS) signals are widely used by bacterial pathogens to control biological functions and virulence in response to changes in cell population densities. Burkholderia cenocepacia employs a molecular mechanism in which the cis-2-dodecenoic acid (named Burkholderiadiffusible signal factor [BDSF]) QS system regulates N-acyl homoserine lactone (AHL) signal production and virulence by modulating intracellular levels of cyclic diguanosine monophosphate (c-di-GMP). Thus, inhibition of BDSF signaling may offer a non-antibiotic-based therapeutic strategy against BDSF-regulated bacterial infections. In this study, we report the synthesis of small-molecule mimics of the BDSF signal and evaluate their ability to inhibit BDSF QS signaling in B. cenocepacia A novel structural analogue of BDSF, 14-Me-C16:Δ2 (cis-14-methylpentadec-2-enoic acid), was observed to inhibit BDSF production and impair BDSF-regulated phenotypes in B. cenocepacia, including motility, biofilm formation, and virulence, while it did not inhibit the growth rate of this pathogen. 14-Me-C16:Δ2 also reduced AHL signal production. Genetic and biochemical analyses showed that 14-Me-C16:Δ2 inhibited the production of the BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Notably, 14-Me-C16:Δ2 attenuated BDSF-regulated phenotypes in various Burkholderia species. These findings suggest that 14-Me-C16:Δ2 could potentially be developed as a new therapeutic agent against pathogenic Burkholderia species by interfering with their QS signaling.IMPORTANCEBurkholderia cenocepacia is an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including the cis-2-dodecenoic acid (BDSF) system and N-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering with B. cenocepacia QS signaling and virulence. We demonstrate that 14-Me-C16:Δ2 reduced BDSF and AHL signal production in B. cenocepacia It also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that 14-Me-C16:Δ2 could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.


Asunto(s)
Burkholderia cenocepacia/efectos de los fármacos , Ácidos Grasos Monoinsaturados/antagonistas & inhibidores , Ácidos Grasos Monoinsaturados/farmacología , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/prevención & control , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Fenotipo , Transducción de Señal , Virulencia/efectos de los fármacos , Virulencia/genética
13.
Mar Drugs ; 17(8)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357504

RESUMEN

Candida albicans is a type of commensal fungi which causes serious infections in immunocompromised patients and contributes to high mortality. In the present study, we identified that the extract from Streptomyces olivaceus SCSIO T05 inhibited hypha and biofilm formation of C. albicans. Seven compounds were isolated and evaluated for their effects on the biological functions and virulence of C. albicans. Two leading compounds, compound 1 (sorbicillin) and compound 2 (3-methyl-N-(2'-phenethyl)-butyrylamide) were identified as exhibiting strong activity against C. albicans morphological transition, adhesion activity, cytotoxicity, and adhesion to human cells, in a dose-dependent manner. Notably, compound 2 inhibited C. albicans infection in mouse oral mucosal models. Transcriptomic analysis and real-time PCR results revealed that compound 2 most likely inhibited the biological functions of C. albicans cells by regulating the expression levels of HWP1, TEC1, ALS1, IFD6, and CSH1, which are associated with filament formation and cell adhesion. Our results suggest that the candidate compounds present excellent efficacy against C. albicans pathogenicity and that they can be developed as potential options for the clinical treatment of candidiasis.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Streptomyces/química , Virulencia/efectos de los fármacos , Células A549 , Animales , Biopelículas/efectos de los fármacos , Candida albicans/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proteínas Fúngicas/genética , Humanos , Hifa/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Mucosa Bucal/microbiología , Resorcinoles/farmacología , Transcriptoma/efectos de los fármacos
14.
Molecules ; 23(1)2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351264

RESUMEN

Ralstonia solanacearum is a causative agent of bacterial wilt in many important crops throughout the world. How to control bacterial wilt caused by R. solanacearum is a major problem in agriculture. In this study, we aim to isolate the biocontrol agents that have high efficacy in the control of bacterial wilt. Three new bacterial strains with high antimicrobial activity against R. solanacearum GMI1000 were isolated and identified. Our results demonstrated that these bacteria could remarkably inhibit the disease index of host plant infected by R. solanacearum. It was indicated that strain GZ-34 (CCTCC No. M 2016353) showed an excellent protective effect to tomato under greenhouse conditions. Strain GZ-34 was characterized as Escherichia coli based on morphology, biochemistry, and 16S rRNA analysis. We identified that the main antimicrobial compounds produced by E. coli GZ-34 were cyclo(l-Pro-d-Ile) and cyclo(l-Pro-l-Phe) using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) analysis. The two active compounds also interfered with the expression levels of some pathogenicity-contributors of R. solanacearum. Furthermore, cyclo(l-Pro-l-Phe) effectively inhibited spore formation of Magnaporthe grisea, which is a vital pathogenesis process of the fungal pathogen, suggesting cyclic dipeptides from E. coli are promising potential antimicrobial agents with broad-spectrum activity to kill pathogens or interfere with their pathogenesis.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antibiosis , Dipéptidos/química , Escherichia coli/metabolismo , Péptidos Cíclicos/química , Ralstonia solanacearum/efectos de los fármacos , Antiinfecciosos/aislamiento & purificación , Dipéptidos/aislamiento & purificación , Dipéptidos/farmacología , Escherichia coli/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Plantas/microbiología , Microbiología del Suelo , Espectrometría de Masa por Ionización de Electrospray
15.
Cell Rep ; 43(5): 114223, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748879

RESUMEN

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Asunto(s)
Proteínas Bacterianas , Burkholderia cenocepacia , Coenzima A Ligasas , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Percepción de Quorum , Percepción de Quorum/genética , Burkholderia cenocepacia/patogenicidad , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Animales , Transducción de Señal , Ácidos Grasos Monoinsaturados/metabolismo , Ratones , Unión Proteica , Ácidos Láuricos/metabolismo
16.
Microb Biotechnol ; 16(1): 116-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404587

RESUMEN

Candida albicans is an important human fungal pathogen. Our previous study disclosed that aryloxy-phenylpiperazine skeleton was a promising molecule to suppress C. albicans virulence by inhibiting hypha formation and biofilm formation. In order to deeply understand the efficacy and mechanism of action of phenylpiperazine compounds, and obtain new derivatives with excellent activity against C. albicans, hence, we synthesized three series of (1-heteroaryloxy-2-hydroxypropyl)-phenylpiperazines and evaluated their inhibitory activity against C. albicans both in vitro and in vivo in this study. Compared with previously reported aryloxy-phenylpiperazines, part of these heteroaryloxy derivatives improved their activities by strongly suppressing hypha formation and biofilm formation in C. albicans SC5314. Especially, (9H-carbazol-4-yl)oxy derivatives 25, 26, 27 and 28 exhibited strong activity in reducing C. albicans virulence in both human cell lines in vitro and mouse infection models in vivo. The compound 27 attenuated the virulence of various clinical C. albicans strains, including clinical drug-resistant C. albicans strains. Moreover, additive effects of the compound 27 with antifungal drugs against drug-resistant C. albicans strains were also discussed. Furthermore, the compound 27 significantly improved the composition and richness of the faecal microbiota in mice infected by C. albicans. These findings indicate that these piperazine compounds have great potential to be developed as new therapeutic drugs against C. albicans infection.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Animales , Ratones , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Antifúngicos/farmacología , Piperazinas/farmacología , Biopelículas
17.
PNAS Nexus ; 2(8): pgad274, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37649583

RESUMEN

Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.

18.
Microbiol Spectr ; 11(3): e0483522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036340

RESUMEN

Many bacteria use small molecules, such as quorum sensing (QS) signals, to perform intraspecies signaling and interspecies or interkingdom communication. Previous studies demonstrated that some bacteria regulate their physiology and pathogenicity by employing 4-hydroxybenzoic acid (4-HBA). Here, we report that 4-HBA controls biological functions, virulence, and anthranilic acid production in Shigella sonnei. The biosynthesis of 4-HBA is performed by UbiC (SSON_4219), which is a chorismate pyruvate-lyase that catalyzes the conversion of chorismate to 4-HBA. Deletion of ubiC caused S. sonnei to exhibit impaired phenotypes, including impaired biofilm formation, extracellular polysaccharide (EPS) production, and virulence. In addition, we found that 4-HBA controls the physiology and virulence of S. sonnei through the response regulator AaeR (SSON_3385), which contains a helix-turn-helix (HTH) domain and a LysR substrate-binding (LysR_substrate) domain. The same biological functions are controlled by AaeR and the 4-HBA signal, and 4-HBA-deficient mutant phenotypes were rescued by in trans expression of AaeR. We found that 4-HBA binds to AaeR and then enhances the binding of AaeR to the promoter DNA regions in target genes. Moreover, we revealed that 4-HBA from S. sonnei reduces the competitive fitness of Candida albicans by interfering with morphological transition. Together, our results suggested that the 4-HBA signaling system plays crucial roles in bacterial physiology and interkingdom communication. IMPORTANCE Shigella sonnei is an important pathogen in human intestines. Following previous findings that some bacteria employ 4-HBA as a QS signal to regulate biological functions, we demonstrate that 4-HBA controls the physiology and virulence of S. sonnei. This study is significant because it identifies both the signal synthase UbiC and receptor AaeR and unveils the signaling pathway of 4-HBA in S. sonnei. In addition, this study also supports the important role of 4-HBA in microbial cross talk, as 4-HBA strongly inhibits hyphal formation by Candida albicans. Together, our findings describe the dual roles of 4-HBA in both intraspecies signaling and interkingdom communication.


Asunto(s)
Bacterias , Shigella sonnei , Humanos , Virulencia , Transducción de Señal
19.
Virulence ; 14(1): 2265012, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37771181

RESUMEN

Candida albicans is an important opportunistic pathogenic fungus that frequently causes serious systemic infection in humans. Due to the vital roles of biofilm formation and the yeast-to-hypha transition in the infection process, we have selected a series of diaryl chalcogenides and tested their efficacy against C. albicans SC5314 pathogenicity by the inhibition of biofilm formation and the yeast-to-hypha transition. The compounds 5-sulfenylindole and 5-selenylindole were found to have excellent abilities to inhibit both biofilm formation and hyphal formation in C. albicans SC5314. Intriguingly, the two leading compounds also markedly attenuated C. albicans SC5314 virulence in human cell lines and mouse infection models at micromolar levels. Furthermore, our results showed that the presence of the compounds at 100 µM resulted in a marked decrease in the expression of genes involved in the cAMP-PKA and MAPK pathways in C. albicans SC5314. Intriguingly, the compounds 5-sulfenylindole and 5-selenylindole not only attenuated the cytotoxicity of Candida species strains but also showed excellent synergistic effects with antifungal agents against the clinical drug-resistant C. albicans strain HCH12. The compound 5-sulfenylindole showed an obvious advantage over fluconazole as it could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. Together, these results suggest that diaryl chalcogenides can potentially be designed as novel clinical therapeutic agents against C. albicans infection. The diaryl chalcogenides of 5-sulfenylindole and 5-selenylindole discovered in this study can provide new direction for developing antifungal agents against C. albicans infection.


Asunto(s)
Candida albicans , Candidiasis , Ratones , Humanos , Animales , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Virulencia , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Fluconazol/farmacología , Hifa , Biopelículas
20.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996405

RESUMEN

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Asunto(s)
Guanosina Monofosfato , Ralstonia solanacearum , Humanos , Virulencia , Ralstonia solanacearum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Regulación Bacteriana de la Expresión Génica , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA