Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nano Lett ; 18(9): 5646-5651, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30114368

RESUMEN

Two-dimensional (2D) transitional metal oxides (TMOs) are an attractive class of materials due to the combined advantages of high active surface area, enhanced electrochemical properties, and stability. Among the 2D TMOs, 2D tungsten oxide (WO3) nanosheets possess great potential in electrochemical applications, particularly in electrochromic (EC) devices. However, feasible production of 2D WO3 nanosheets is challenging due to the innate 3D crystallographic structure of WO3. Here we report a novel solution-phase synthesis of 2D WO3 nanosheets through simple oxidation from 2D tungsten disulfide (WS2) nanosheets exfoliated from bulk WS2 powder. The complete conversion from WS2 into WO3 was confirmed through crystallographic and elemental analyses, followed by validation of the 2D WO3 nanosheets applied in the EC device. The EC device showed color modulation of 62.57% at 700 nm wavelength, which is 3.43 times higher than the value of the conventional device using bulk WO3 powder, while also showing enhancement of ∼46.62% and ∼62.71% in switching response-time (coloration and bleaching). The mechanism of enhancement was rationalized through comparative analysis based on the thickness of the WO3 components. In the future, 2D WO3 nanosheets could also be used for other promising applications such as sensors, catalysis, thermoelectric, and energy conversion.

2.
Small ; 12(8): 994-9, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26728175

RESUMEN

PEG-functionalized graphene quantum dots (GQDs) are shown to promote fast exciton dissociation in organic solar cells. Short-chain PEG promotes the most favorable interaction with other organic layers, and the overall efficiency is improved by 36% when compared to the reference devices. The mechanism of enhancement is shown to be increased absorption due to fewer charges remain-ing in the bound state.

3.
Small ; 11(26): 3124-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25727909

RESUMEN

Graphene flakes (GFs) with minimized defects and oxidation ratios are incorporated into polyethylene (PE) to enhance the moisture barrier. GFs produced involving solvothermal intercalation show extremely low oxidation rates (3.17%), and are noncovalently functionalized in situ, inducing strong hydrophobicity. The fabricated composite possesses the best moisture barrier performance reported for a polymer-graphene composite.

4.
Nano Lett ; 13(9): 4190-7, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23924512

RESUMEN

Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.

5.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38869561

RESUMEN

With a rising interest in smart windows and optical displays, the utilization of metal oxides (MOs) has garnered significant attention owing to their high active sites, flexibility, and tunable electronic and optical properties. Despite these advantages, achieving precise tuning of optical properties in MOs-based quantum dots and their mass production remains a challenge. In this study, we present an easily scalable approach to generate WO3 quantum dots with diverse sizes through sequential insertion/exfoliation processes in solvents with suitable surface tension. Additionally, we utilized the prepared WO3 quantum dots in the fabrication of luminescent transparent wood via an impregnation process. These quantum dots manifested three distinct emitting colors: red, green, and blue. Through characterizations of the structural and optical properties of the WO3 quantum dots, we verified that quantum dots with sizes around 30 nm, 50 nm, and 70 nm showcase a monoclinic crystal structure with oxygen-related defect sites. Notably, as the size of the WO3 quantum dots decreased, the maximum emitting peak underwent a blue shift, with peaks observed at 407 nm (blue), 493 nm (green), and 676 nm (red) under excitation by a He-Cd laser (310 nm), respectively. Transparent woods infused with various WO3 quantum dots exhibited luminescence in blue/white emitting colors. These results suggest substantial potential in diverse applications, such as building materials and optoelectronics.

6.
ACS Appl Mater Interfaces ; 16(23): 30137-30146, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814156

RESUMEN

The use of powered activated carbon is often limited by inconsistent particle sizes and porosities, leading to reduced adsorption efficiencies. In this study, we demonstrated a practical and environmentally friendly method for creating a 3D graphene nanostructure with highly uniform ultramicropores from wood-based biomass through a series of delignification, carbonization, and activation processes. In addition, we evaluated the capture characteristics of this structure for CO2, CH4, and N2 gases as well as its selectivity for binary-mixture gases. Based on textural and chemical analyses, the delignified monolith had a lamellar structure interconnected by cellulose-based fibers. Interestingly, applying the KOH vapor activation technique solely to the delignified samples led to the formation of a monolithic 3D network composed of interconnected graphene sheets with a high degree of crystallinity. Especially, the Act. 1000 sample exhibited a specific surface area of 1480 m2/g and a considerable pore volume of 0.581 cm3/g, featuring consistently uniform ultramicropores over 90% in the range of 3.5-11 Å. The monolithic graphene-based samples, predominantly composed of ultramicropores, demonstrated a notably heightened capture capacity of 6.934 mol/kg at 110 kPa for CO2, along with favorable selectivity within binary gas mixtures (CO2/N2, CO2/CH4, and CO2/CH4). Our findings suggest that this biomass-derived 3D structure has the potential to serve as a monolithic adsorbent in gas separation applications.

7.
Small ; 9(15): 2602-10, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23457081

RESUMEN

The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix.

8.
Nano Lett ; 12(6): 2871-6, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22616737

RESUMEN

The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (∼930 Ω/□ at ∼75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.


Asunto(s)
Cristalización/métodos , Grafito/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
9.
Nanomaterials (Basel) ; 13(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513086

RESUMEN

Metallic-phase transition metal dichalcogenide quantum dots (TMDs-mQDs) have been reported in recent years. However, a dominant mechanism for modulating their intrinsic exciton behaviors has not been determined yet as their size is close to the Bohr radius. Herein, we demonstrate that the oxidation effect prevails over quantum confinement on metallic-phase tungsten dichalcogenide QDs (WX2-mQDs; X = S, Se) when the QD size becomes larger than the exciton Bohr radius. WX2-mQDs with a diameter of ~12 nm show an obvious change in their photophysical properties when the pH of the solution changes from 2 to 11 compared to changing the size from ~3 nm. Meanwhile, we found that quantum confinement is the dominant function for the optical spectroscopic results in the WX2-mQDs with a size of ~3 nm. This is because the oxidation of the larger WX2-mQDs induces sub-energy states, thus enabling excitons to migrate into the lower defect energy states, whereas in WX2-mQDs with a size comparable to the exciton Bohr radius, protonation enhances the quantum confinement.

10.
ACS Macro Lett ; 12(11): 1569-1575, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37931088

RESUMEN

A clear understanding of the structure-property relationship of intrinsically stretchable polymer semiconductors (ISPSs) is essential for developing high-performance polymer-based electronics. Herein, we investigate the effect of the fluorination position on the crystalline structure, charge-carrier mobility, and stretchability of polymer semiconductors based on a benzodithiophene-co-benzotriazole configuration. Although four different polymer semiconductors showed similar field-effect mobilities for holes (µ ≈ 0.1 cm2 V-1 s-1), polymer semiconductors with nonfluorinated backbones exhibited improved thin-film stretchability confirmed with crack onset strain (εc ≈ 20%-50%) over those of fluorinated counterparts (εc ≤ 10%). The enhanced stretchability of polymer semiconductors with a nonfluorinated backbone is presumably due to the higher face-on crystallite ratio and π-π stacking distance in the out-of-plane direction than those of the other polymer semiconductors. These results provide new insights into how the thin-film stretchability of polymer semiconductors can be improved by using precise molecular tailoring without deteriorating electrical properties.

11.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999315

RESUMEN

Activated carbon (AC) compounds derived from biomass precursors have garnered significant attention as electrode materials in electric double-layer capacitors (EDLCs) due to their ready availability, cost-effectiveness, and potential for mass production. However, the accessibility of their active sites in electrochemistry has not been investigated in detail. In this study, we synthesized two novel macro/micro-porous carbon structures prepared from a chitosan precursor using an acid/potassium hydroxide activation process and then examined the relationship between their textural characteristics and capacitance as EDLCs. The material characterizations showed that the ACs, prepared through different activation processes, differed in porosity, with distinctive variations in particle shape. The sample activated at 800 °C (Act-chitosan) was characterized by plate-shaped particles, a specific surface area of 4128 m2/g, and a pore volume of 1.87 cm3/g. Assessment of the electrochemical characteristics of Act-chitosan showed its remarkable capacitance of 183.5 F/g at a scan rate of 5 mV/s, and it maintained exceptional cyclic stability even after 10,000 cycles. The improved electrochemical performance of both chitosan-derived carbon structures could thus be attributed to their large, well-developed active sites within pores < 2 nm, despite the fact that interconnected macro-porous particles can enhance ion accessibility on electrodes. Our findings provide a basis for the fabrication of biomass-based materials with promising applications in electrochemical energy storage systems.

12.
Materials (Basel) ; 17(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203897

RESUMEN

It is difficult to obtain ultrathin two-dimensional (2D) tungsten trioxide (WO3) nanosheets through direct exfoliation from bulk WO3 in solution due to the strong bonding between interlayers. Herein, WO3 nanosheets with controllable sizes were synthesized via K+ intercalation and the exfoliation of WO3 powder using sonication and temperature. Because of the intercalation and expansion in the interlayer distance, the intercalated WO3 could be successfully exfoliated to produce a large quantity of individual 2D WO3 nanosheets in N-methyl-2-pyrrolidone under sonication. The exfoliated ultrathin WO3 nanosheets exhibited better electrochromic performance in an electrochromic device than WO3 powder and exfoliated WO3 without intercalation. In particular, the prepared small WO3 nanosheets exhibited excellent electrochromic properties with a large optical modulation of 41.78% at 700 nm and fast switching behavior times of 9.2 s for bleaching and 10.5 s for coloring. Furthermore, after 1000 cycles, the small WO3 nanosheets still maintained 86% of their initial performance.

13.
Materials (Basel) ; 15(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888412

RESUMEN

Fluorescence properties of quantum dots (QDs) are critically affected by their redox states, which is important for practical applications. In this study, we investigated the optical properties of MoSe2-metallic phase quantum-dots (MoSe2-mQDs) depending on the pH variation, in which the MoSe2-mQDs were dispersed in water with two sizes (Φ~3 nm and 12 nm). The larger MoSe2-mQDs exhibited a large red-shift and broadening of photoluminescence (PL) peak with a constant UV absorption spectra as varying the pH, while the smaller ones showed a small red-shift and peak broadening, but discrete absorption bands in the acidic solution. The excitation wavelength-dependent photoluminescence shows that the PL properties of smaller MoSe2-mQDs are more sensitive to the pH change compared to those of larger ones. From the time-resolved PL spectroscopy, the excitons dominantly decaying with an energy of ~3 eV in pH 2 clearly show the shift of PL peak to the lower energy (~2.6 eV) as the pH increases to 7 and 11 in the smaller MoSe2-mQDs. On the other hand, in the larger MoSe2-mQDs, the exciton decay is less sensitive to the redox states compared to those of the smaller ones. This result shows that the pH variation is more critical to the change of photophysical properties than the size effect in MoSe2-mQDs.

14.
Materials (Basel) ; 15(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233909

RESUMEN

The development of graphene quantum dots (GQDs) with low toxicity, excellent dispersibility, and high photostability has led to extensive progress in bio-imaging and optical sensing applications. However, one-pot synthesis and mass production of GQDs, and tuning their photoluminescence, remains a challenge. Here we demonstrate a simple and scalable method for fabricating GQDs with high size uniformity and chemical stability, via a sequential process of inserting alkali metal into graphite (Stage I: KC8 and Stage II: KC24) and exfoliation to GQDs in a selected solvent. Structural and optical measurements were conducted, and the emitted colors of the as-prepared GQDs were blue (KC8) and yellow (KC24), respectively. The stage of graphite intercalation in the compounds played an important role in the size and thickness of the GQD. The as-prepared GQDs had clear characteristic peaks consistent with the quantum confinement effect and intrinsic/extrinsic states. Our approach will provide great potential for a wide variety of bioimaging and bioanalysis applications.

15.
ACS Nano ; 16(4): 5672-5681, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35322663

RESUMEN

Interest in wearable electronics has led to extensive studies on woven textiles that are mechanically robust and stretchable, have high electrical conductivities, and exhibit fire resistance properties even at high temperatures. We demonstrate a highly easy and scalable method for fabricating defect-free graphene (dfG) nacre-based woven electronic textiles (e-textiles) with enhanced flame-retardant properties and high electronic conductivities. The as-prepared graphene shows perfect preservation of its inherent properties without any crystal damage during subsequent exfoliation and noncovalent melamine functionalization. The defect-free graphene functionalized by melamine (m-dfG) is well dispersed in various polar solvents. To investigate the synergistic effect of m-dfG, quaternary artificial nacre composites are fabricated by adding manganese(II) chloride to a m-dfG/polymer (carboxymethyl cellulose (CMC)) composite. Their mechanical, electrical, and thermal characteristics are then evaluated. The quaternary m-dfG-Mn2+-CMC artificial nacre exhibits exceptionally enhanced mechanical properties (tensile strength: 613.9 MPa; toughness: 7.13 MJ m-3) and the best flame retardancy (even at torch heating) as compared to those of graphene oxide/reduced graphene oxide (GO/rGO)-based nacres. In this context, our approach will be helpful to future wearable electronics and fire-retardant textiles with high strength, which can accelerate the commercial viability of e-textiles.

16.
ACS Appl Mater Interfaces ; 14(8): 10394-10406, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188737

RESUMEN

Manufacturing an economically viable, efficient commercial thermoelectric (TE) module is essential for power generation and refrigeration. However, mediocre TE properties, lack of good mechanical stability of the material, and significant difficulties involved in the manufacturing of large-scale powder as well as bulk samples hinder the potential applications of the modules. Herein, an economically feasible single-step water atomization (WA) is employed to synthesize BST powder (2 kg) by Cu doping within a short time and consolidated into large-scale bulk samples (500 g) for the first time with a diameter of 50 mm and a thickness of about 40 mm using spark plasma sintering (SPS). The incorporation of Cu into BST greatly boosts the carrier concentration, leading to a significant increase in electrical conductivity, and inhibits the bipolar thermal conductivity by 73%. Synchronously, the lattice contribution (κL) is greatly reduced by the effective scattering of phonons by comprising fine-grain boundaries and point defects. Therefore, the peak ZT is shifted to the mid-temperature range and obtained a maximum of ∼1.31 at 425 K and a ZTave of 1.24 from 300 to 500 K for the BSTCu0.05 sample, which are considerably greater than those of the bare BST sample. Moreover, the maximum compressive mechanical strength of large-size samples manufactured by the WA-SPS process is measured as 102 MPa, which is significantly higher than commercial zone melting samples. The thermoelectric module assembled with WA-SPS-synthesized BSTCu0.05 and commercial n-type BTS material manifests an outstanding cooling performance (-19.4 °C), and a maximum output power of 6.91 W is generated at ΔT ∼ 200 K. These results prove that the BSTCux samples are eminently suitable for the fabrication of industrial thermoelectric modules.

17.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630867

RESUMEN

Transition metal dichalcogenide-based quantum dots are promising materials for applications in diverse fields, such as sensors, electronics, catalysis, and biomedicine, because of their outstanding physicochemical properties. In this study, we propose bio-imaging characteristics through utilizing water-soluble MoS2 quantum dots (MoS2-QDs) with two different sizes (i.e., ~5 and ~10 nm). The structural and optical properties of the fabricated metallic phase MoS2-QDs (m-MoS2-QDs) were characterized by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and photoluminescence. The synthesized m-MoS2-QDs showed clear photophysical characteristic peaks derived from the quantum confinement effect and defect sites, such as oxygen functional groups. When the diameter of the synthesized m-MoS2-QD was decreased, the emission peak was blue-shifted from 436 to 486 nm under excitation by a He-Cd laser (325 nm). Density functional theory calculations confirmed that the size decrease of m-MoS2-QDs led to an increase in the bandgap because of quantum confinement effects. In addition, when incorporated into the bio-imaging of HeLa cells, m-MoS2-QDs were quite biocompatible with bright luminescence and exhibited low toxicity. Our results are commercially applicable for achieving high-performance bio-imaging probes.

18.
ACS Appl Mater Interfaces ; 13(45): 54339-54347, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747615

RESUMEN

It is generally accepted that while efficient suppression of molecular vibration is inevitable for purely organic phosphors due to their long emission lifetime in the regime of 1 ms or longer, fluorophores having a lifetime in the nanoseconds regime are not sensitive to collisional quenching. Here, however, we demonstrate that a fluorophore, 2,5-bis(hexyloxy)terephthaldehyde (BHTA), capable of having hydrogen bonding (H bonding) via its two aldehyde groups can have a largely enhanced (450%) fluorescence quantum yield (QY) in amorphous poly(acrylic acid) (PAA) matrix compared to its crystalline powder. We ascribe this enhanced QY to the efficient suppression of molecular vibrations via intermolecular H bonding. We confirm this feasibility by conducting temperature-dependent fluorescence emission intensity measurement. As gaseous phenol can intervene with the H bonding between BHTA and PAA, interestingly, BHTA embedded in PAA can selectively detect gaseous phenol by a sharp fluorescence emission intensity drop that is visibly recognizable by the naked eye. The results provide an insightful molecular design strategy for a fluorophore and fluorometric sensory system design for enhanced photoluminescence QY and convenient detection of various volatile organic compounds.

19.
Nanomaterials (Basel) ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072613

RESUMEN

Stem cell therapy is one of the novel and prospective fields. The ability of stem cells to differentiate into different lineages makes them attractive candidates for several therapies. It is essential to understand the cell fate, distribution, and function of transplanted cells in the local microenvironment before their applications. Therefore, it is necessary to develop an accurate and reliable labeling method of stem cells for imaging techniques to track their translocation after transplantation. The graphitic quantum dots (GQDs) are selected among various stem cell labeling and tracking strategies which have high photoluminescence ability, photostability, relatively low cytotoxicity, tunable surface functional groups, and delivering capacity. Since GQDs interact easily with the cell and interfere with cell behavior through surface functional groups, an appropriate surface modification needs to be considered to get close to the ideal labeling nanoprobes. In this study, polyethylene glycol (PEG) is used to improve biocompatibility while simultaneously maintaining the photoluminescent potentials of GQDs. The biochemically inert PEG successfully covered the surface of GQDs. The PEG-GQDs composites show adequate bioimaging capabilities when internalized into neural stem/progenitor cells (NSPCs). Furthermore, the bio-inertness of the PEG-GQDs is confirmed. Herein, we introduce the PEG-GQDs as a valuable tool for stem cell labeling and tracking for biomedical therapies in the field of neural regeneration.

20.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205908

RESUMEN

The design of photoactive materials and interface engineering between organic/inorganic layers play a critical role in achieving enhanced performance in energy-harvesting devices. Two-dimensional transitional dichalcogenides (TMDs) with excellent optical and electronic properties are promising candidates in this regard. In this study, we demonstrate the fabrication of size-controlled MoS2 quantum dots (QDs) and present fundamental studies of their optical properties and their application as a hole-transport layer (HTL) in organic solar cells (OSCs). Optical and structural analyses reveal that the as-prepared MoS2 QDs show a fluorescence mechanism with respect to the quantum confinement effect and intrinsic/extrinsic states. Moreover, when incorporated into a photovoltaic device, the MoS2 QDs exhibit a significantly enhanced performance (5/10-nanometer QDs: 8.30%/7.80% for PTB7 and 10.40%/10.17% for PTB7-Th, respectively) compared to those of the reference device (7.24% for PTB7 and 9.49% for PTB7-Th). We confirm that the MoS2 QDs clearly offer enhanced transport characteristics ascribed to higher hole-mobility and smoother root mean square (Rq) as a hole-extraction material. This approach can enable significant advances and facilitate a new avenue for realizing high-performance optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA