Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 23(9): 4139-4150, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39129220

RESUMEN

In this study, we utilized the Olink Cardiovascular III panel to compare the expression levels of 92 cardiovascular-related proteins between patients with dilated cardiomyopathy combined with heart failure (DCM-HF) (n = 20) and healthy normal people (Normal) (n = 18). The top five most significant proteins, including SPP1, IGFBP7, F11R, CHI3L1, and Plaur, were selected by Olink proteomics. These proteins were further validated using ELISA in plasma samples collected from an additional cohort. ELISA validation confirmed significant increases in SPP1, IGFBP7, F11R, CHI3L1, and Plaur in DCM-HF patients compared to healthy controls. GO and KEGG analysis indicated that NT-pro BNP, SPP1, IGFBP7, F11R, CHI3L1, Plaur, BLM hydrolase, CSTB, Gal-4, CCL15, CDH5, SR-PSOX, and CCL2 were associated with DCM-HF. Correlation analysis revealed that these 13 differentially expressed proteins have strong correlations with clinical indicators such as LVEF and NT-pro BNP, etc. Additionally, in the GEO-DCM data sets, the combined diagnostic value of these five core proteins AUC values of 0.959, 0.773, and 0.803, respectively indicating the predictive value of the five core proteins for DCM-HF. Our findings suggest that these proteins may be useful biomarkers for the diagnosis and prediction of DCM-HF, and further research is prompted to explore their potential as therapeutic targets.


Asunto(s)
Biomarcadores , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Proteómica , Cardiomiopatía Dilatada/sangre , Cardiomiopatía Dilatada/diagnóstico , Humanos , Biomarcadores/sangre , Proteómica/métodos , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Osteopontina/sangre , Péptido Natriurético Encefálico/sangre , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 1 Similar a Quitinasa-3/sangre , Fragmentos de Péptidos/sangre , Estudios de Casos y Controles , Adulto , Ensayo de Inmunoadsorción Enzimática
2.
J Cell Mol Med ; 28(12): e18440, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38890792

RESUMEN

Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Mitocondrias , Humanos , Hepatitis B Crónica/virología , Hepatitis B Crónica/patología , Masculino , Femenino , Virus de la Hepatitis B/patogenicidad , Adulto , Mitocondrias/metabolismo , Persona de Mediana Edad , Recuento de Leucocitos , Leucocitos/metabolismo , ADN Viral/sangre , Potencial de la Membrana Mitocondrial , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/virología , Monocitos/patología , Neutrófilos/metabolismo , Neutrófilos/inmunología
3.
J Virol ; 97(3): e0143322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916989

RESUMEN

Cathelicidin antimicrobial peptides (mouse, CRAMP; human, LL-37) have broad-spectrum antiviral activities against enveloped viruses, but their mechanisms of action against nonenveloped viruses remain to be elucidated. Coxsackievirus B3 (CVB3), a member of nonenveloped virus belonging to the Enterovirus genus of Picornaviridae, is an important pathogen of viral myocarditis and dilated cardiomyopathy. Here, we observed that cardiac CRAMP expression was significantly upregulated in mice after CVB3 infection. The administration of CRAMP or LL-37 markedly suppressed CVB3 infection in mice, and CRAMP deficiency increased the susceptibility of mice to CVB3. CRAMP and LL-37 inhibited CVB3 replication in primary cardiomyocytes. However, they did not inactivate CVB3 particles and did not regulate the response of cardiomyocytes against CVB3 infection. Intriguingly, they inhibited CVB3 transmission through the exosome, but not virus receptor. In detail, CRAMP and LL-37 directly induced the lysis of exosomes by interfering with exosomal heat shock protein 60 (HSP60) and then blocked the diffusion of exosomes to recipient cells and inhibited the establishment of productive infection by exosomes. In addition, the interaction of CRAMP and LL-37 with HSP60 simultaneously inhibited HSP60-induced apoptosis in cardiomyocytes and reduced HSP60-enhanced CVB3 replication. Our findings reveal a novel mechanism of cathelicidins against viral infection and provide a new therapeutic strategy for CVB3-induced viral myocarditis. IMPORTANCE The relative mechanisms that cathelicidin antimicrobial peptides use to influence nonenveloped virus infection are unclear. We show here that cathelicidin antimicrobial peptides (CRAMP and LL-37) directly target exosomal HSP60 to destroy exosomes, which in turn block the diffusion of exosomes to recipient cardiomyocytes and reduced HSP60-induced apoptosis, thus restricting coxsackievirus B3 infection. Our results provide new insights into the mechanisms cathelicidin antimicrobial peptides use against viral infection.


Asunto(s)
Catelicidinas , Infecciones por Coxsackievirus , Exosomas , Miocitos Cardíacos , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Catelicidinas/administración & dosificación , Chaperonina 60/antagonistas & inhibidores , Infecciones por Coxsackievirus/tratamiento farmacológico , Enterovirus Humano B/fisiología , Exosomas/efectos de los fármacos , Miocarditis , Miocitos Cardíacos/efectos de los fármacos , Replicación Viral
4.
Theor Appl Genet ; 136(5): 97, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027047

RESUMEN

KEY MESSAGE: AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis. Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.


Asunto(s)
Arachis , Fitomejoramiento , Humanos , Arachis/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética
5.
J Sci Food Agric ; 102(4): 1363-1371, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358348

RESUMEN

BACKGROUND: Osteoporosis has become an important public health issue with the increase of aging population, and afflicts millions of people worldwide, particularly elderly or postmenopausal women. In the present study, we prepared compound amino acid chelated calcium (CAA-Ca) from processing by-products of Chlamys farreri, and evaluated its effect on postmenopausal osteoporosis with an ovariectomized (OVX) rat model. RESULTS: A 60-day treatment of OVX rats with CAA-Ca significantly enhanced the bone mineral density (BMD) and the bone calcium content. Meanwhile, some bone morphometric parameters, trabecular bone number (Tb.N), trabecular bone volume fraction (BV/TV), trabecular bone thickness (Tb.Th) and cortical bone wall thickness (Ct.Th), were also increased by 8.20%, 118.18%, 32.99% and 19.10%, respectively. In addition, the alkaline phosphatase (ALP) levels in serum were significantly reduced after CAA-Ca treatment, while the blood calcium levels were increased. Mechanistically, CAA-Ca down-regulated the levels of receptor activator of nuclear factor-κB (RANK) and receptor activator of nuclear factor-κB ligand (RANKL), and up-regulated osteoprotegerin (OPG) levels in osteoclasts, inhibiting bone resorption and bone loss. Meanwhile, CAA-Ca treatment raised ß-catenin levels and lowered Dickkopf1 (DKK1) levels in the Wnt signaling pathway of osteoblasts, which can promote calcium absorption and bone formation. CONCLUSION: The results suggested that CAA-Ca promoted bone formation, inhibited bone resorption and improved bone microstructure. Therefore, this study contributes to the potential application of CAA-Ca as a functional food resource in the treatment of postmenopausal osteoporosis. © 2021 Society of Chemical Industry.


Asunto(s)
Osteoporosis Posmenopáusica , Pectinidae , Anciano , Aminoácidos , Animales , Densidad Ósea , Calcio , Femenino , Humanos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Ovariectomía , Ratas , Ratas Sprague-Dawley , Vía de Señalización Wnt
6.
Chemistry ; 27(27): 7549-7560, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33769618

RESUMEN

In this work, we successfully demonstrate high-yield synthesis of high-quality gold nanorods (Au NRs) with width ranging from 6.5 nm to 175 nm by introducing heptanol molecules as secondary templating agents during cetyltrimethylammonium bromide-templated, seeded growth method. The results show that an appropriate concentration of heptanol molecules not only alter the micellization behavior of CTAB in water, but also help silver ions impact the symmetry-breaking efficiency of additional Au-NP seeds in addition to enhancing the utilization of gold precursors. Moreover, the generality and versatility of the present strategy for synthesis of Au NRs with flexible controlled dimensions are further demonstrated by successful synthesis of Au NRs with the assistance of other fatty alcohols with properly long alkyl chains. Furthermore, when arrays of vertically aligned Au NRs with large width (AVA-Au120×90 NRs) are used as SERS substrates, they can achieve the ultralow limit of detection for crystal violet (10-16  M) with good reliability and reproducibility, and the rapid detection and identification of residual harmful substances.


Asunto(s)
Oro , Nanotubos , Cetrimonio , Reproducibilidad de los Resultados , Plata
7.
Proc Natl Acad Sci U S A ; 108(31): 12793-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768375

RESUMEN

Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/metabolismo , Interferencia de ARN , Proteína p53 Supresora de Tumor/genética , Animales , Western Blotting , Diferenciación Celular/genética , Linaje de la Célula/genética , Trasplante de Células/métodos , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Cariotipificación , Queratinocitos/citología , Ratones , Ratones SCID , Ratones Transgénicos , Microscopía Fluorescente , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo
8.
Int J Biol Macromol ; 259(Pt 2): 129394, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218277

RESUMEN

In this study, the green synthesis of chitosan/glutamic acid/agarose/Ag (Chi/GA/Aga/Ag) nanocomposite hydrogel was obtained via in situ reduction of Ag ions during the crosslinking process of chitosan-agarose double network hydrogels. The rich hydroxyl, carboxyl and amino groups in both agarose, chitosan, and glutamic acid can effectively control the growth, dispersion and immobilization of nearly spherical Ag nanoparticles (70 nm) in the Chi/GA/Aga/Ag composite hydrogel. Glutamic acids can act as the structure-directing agents to induce the formation of chitosan/glutamic acid hydrogel. The mechanical strength of the Chi/GA/Aga/Ag composite hydrogel can be enhanced by the introduction of chitosan-agarose double network hydrogels, which guarantees that it can be directly used as a visual test strip of the Cu ions with a lower detection limit of 1 µM and an active catalyst for the reduction of 4-nitrophenol within 18 min. The quantitative and semi-quantitative measurement of Cu ions can be carried out by UV-visible absorption spectroscopy and visual measurement, which provided a convenient, portable, and "naked-eye" solid-state detection methodology.


Asunto(s)
Antígenos de Grupos Sanguíneos , Quitosano , Nanopartículas del Metal , Nitrofenoles , Sefarosa/química , Plata/química , Nanogeles , Quitosano/química , Ácido Glutámico , Nanopartículas del Metal/química , Colorimetría , Hidrogeles/química
9.
Genes (Basel) ; 15(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254964

RESUMEN

Improving seed oil quality in peanut (Arachis hypogaea) has long been an aim of breeding programs worldwide. The genetic resources to achieve this goal are limited. We used an advanced recombinant inbred line (RIL) population derived from JH5 × KX01-6 to explore quantitative trait loci (QTL) affecting peanut oil quality and their additive effects, epistatic effects, and QTL × environment interactions. Gas chromatography (GC) analysis suggested seven fatty acids components were obviously detected in both parents and analyzed in a follow-up QTL analysis. The major components, palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2), exhibited considerable phenotypic variation and fit the two major gene and minor gene mixed-inheritance model. Seventeen QTL explained 2.57-38.72% of the phenotypic variation in these major components, with LOD values of 4.12-37.56 in six environments, and thirty-five QTL explained 0.94-32.21% of the phenotypic variation, with LOD values of 5.99-150.38 in multiple environments. Sixteen of these QTL were detected in both individual and multiple environments. Among these, qFA_08_1 was a novel QTL with stable, valuable and major effect. Two other major-effect QTL, qFA_09_2 and qFA_19_3, share the same physical position as FAD2A and FAD2B, respectively. Eleven stable epistatic QTL involving nine loci explained 1.30-34.97% of the phenotypic variation, with epistatic effects ranging from 0.09 to 6.13. These QTL could be valuable for breeding varieties with improved oil quality.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Fitomejoramiento , Ácidos Grasos/genética , Aceites de Plantas
10.
Iran J Kidney Dis ; 18(3): 168-178, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38904337

RESUMEN

INTRODUCTION: Diabetic nephropathy (DN) belongs to the major cause of end-stage kidney disease. We probed the functions of a microRNA miR-33a in inducing podocytes injury during childhood  DN (CDN). METHODS: Kidney samples were collected from 20 children with DN. Matrix deposition and glomerular basement membranes thickness were examined by periodic acid-Schiff staining. Immunofluorescence staining was performed to assess kidney function-related proteins. MicroRNA (MiR)-33a mimic together with miR-33a inhibitor was transfected into podocytes for determining the roles of miR-33a. Glomerular podocyte apoptosis was determined by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining along with flow cytometry. RESULTS: Down-regulation of Nephrin and Podocin and increased podocyte apoptosis rate were observed in the glomerulus of CDN as well as podocytes treated with high glucose. MiR-33a was up regulated in the glomeruli and glucose-treated podocytes. Injury in podocytes was aggravated with miR-33a elevation but alleviated with miR-33a inhibition. Moreover, the expression of Sirtuin 6 (Sirt6) was decreased while the levels of notch receptor 1 (Notch1) and notch receptor 4 (Notch4) were elevated in the glomerulus and glucose-treated podocytes. Decreased level of Sirt6 upon glucose treatment was abrogated by miR-33a inhibition, and the podocytes injury induced by glucose exposure was relieved by Sirt6 via Notch signaling. CONCLUSION: These findings indicated that miR-33a promoted podocyte injury via targeting Sirt6-dependent Notch signaling in CDN, which might provide a novel sight for CDN treatment. DOI: 10.52547/ijkd.7904.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , MicroARNs , Podocitos , Transducción de Señal , Sirtuinas , MicroARNs/metabolismo , MicroARNs/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Podocitos/metabolismo , Podocitos/patología , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Apoptosis/genética , Masculino , Niño , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Femenino , Receptores Notch/metabolismo , Receptores Notch/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucosa/metabolismo , Regulación hacia Arriba , Receptor Notch1/metabolismo , Receptor Notch1/genética , Regulación hacia Abajo
11.
Heliyon ; 10(6): e27646, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509951

RESUMEN

Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims: To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods: Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-ß-galactosidase (SA-ß-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results: Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of ß-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions: BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.

12.
Chin J Nat Med ; 22(5): 416-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796215

RESUMEN

Bazi Bushen (BZBS), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy in testicular dysfunction within D-galactose and NaNO2 mouse models. This study aimed to ascertain if BZBS could also mitigate the decline in testicular function associated with natural aging. Therefore, male aged mice were employed to evaluate the preventive effects of BZBS on male reproductive aging. This was achieved by assessing sex hormone production, testicular histomorphology, and spermatogenesis. Relative to the untreated aged control group, BZBS administration elevated the levels of sex hormones and spermatocyte populations and preserved normal testicular structure in aged mice. Notably, spermatogenesis was maintained. Further analyses, including malondialdehyde (MDA) assays and real-time PCR, indicated that BZBS diminished testicular oxidative stress and the inflammatory burden. Corroborating these findings, mice treated with BZBS exhibited reductions in the populations of senescent and apoptotic cells within the seminiferous tubules, suggesting alleviated cellular damage. In contrast, we observed that rapamycin, a drug known for its longevity benefits, induced excessive testicular apoptosis and did not decrease lipid peroxidation. Collectively, our results highlight BZBS's promising clinical potential in counteracting male reproductive aging, underlining its mechanisms of action.


Asunto(s)
Envejecimiento , Medicamentos Herbarios Chinos , Estrés Oxidativo , Espermatogénesis , Testículo , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Testículo/efectos de los fármacos , Testículo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Reproducción/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Malondialdehído/metabolismo , Hormonas Esteroides Gonadales/metabolismo
13.
Int Immunopharmacol ; 116: 109812, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746022

RESUMEN

Fibrosis refers to the process of excessive deposition of extracellular matrix (ECM) proteins, eventually leading to excessive scar formation. Fibrotic diseases can occur in many organs and result in high mortality. Currently, there is no effective treatment for fibrosis. As a new form of regulatory cell death (RCD), ferroptosis is mainly mediated by iron overload and lipid peroxidation. Emerging evidence shows that ferroptosis is involved in the pathogenesis of fibrotic diseases. Generally, ferroptosis of parenchymal cells exacerbates the progression of fibrosis, while ferroptosis of myofibroblasts may ameliorate it. Therefore, studying the mechanisms of ferroptosis in fibrosis and targeting ferroptosis in certain cells can provide valuable insights into the pathogenesis of fibrotic diseases. In the present review, we summarized the mechanisms and regulators of ferroptosis and then described the mechanism of fibrosis and the role of ferroptosis in fibrotic diseases, including liver fibrosis, renal fibrosis, pulmonary fibrosis, and myocardial fibrosis.


Asunto(s)
Ferroptosis , Humanos , Fibrosis , Muerte Celular , Cirrosis Hepática/metabolismo , Peroxidación de Lípido
14.
Biosens Bioelectron ; 237: 115527, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37480787

RESUMEN

The microfluidic technology provides an ideal platform for in situ screening of enzyme inhibitors and activators from natural products. This work described a surface-modified ITO glass-PDMS hybrid microfluidic chip for evaluating thrombin interaction with its potential inhibitors by fluorescence imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The fluorescence-labeled substrate was immobilized on a conductive ITO glass slide coated with gold nanoparticles/thiol-ß-cyclodextrin modified TiO2 nanowires (Au-ß-CD@TiO2 NWs) via Au-S bonds. A PDMS microchannel plate was placed on top of the modified ITO slide. The premixed solutions of thrombin and candidate thrombin inhibitors were infused into the microchannels to form a microreactor environment. The enzymatic reaction was rapidly monitored by fluorescence microscopy, and MALDI MS was used to validate and quantify the enzymatic hydrolysate of thrombin to determine the enzyme kinetic process and inhibitory activities of selected flavonoids. The fluorescence and MALDI MS results showed that luteolin, cynaroside, and baicalin have good thrombin inhibitory activity and their half-maximal inhibitory concentrations (IC50) were below 30 µM. The integration of fluorescence imaging and MALDI MSI for in situ monitoring and quantifying the enzymatic reaction in a microfluidic chip is capable of rapid and accurate screening of thrombin inhibitors from natural products.


Asunto(s)
Productos Biológicos , Técnicas Biosensibles , Nanopartículas del Metal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Microfluídica/métodos , Trombina/química , Oro/química , Productos Biológicos/farmacología , Anticoagulantes
15.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243164

RESUMEN

Inflammasomes are cytosolic sensors of pathogens. Their activation can lead to the induction of caspase-1-mediated inflammatory responses and the release of several proinflammatory cytokines, including IL-1ß. There is a complex relationship between viral infection and the nucleotide-binding oligomerization domain-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome. The activation of the NLRP3 inflammasome is essential for antiviral immunity, while excessive NLRP3 inflammasome activation may lead to excessive inflammation and pathological damage. Meanwhile, viruses have evolved strategies to suppress the activation of inflammasome signaling pathways, thus escaping immune responses. In this study, we investigated the inhibitory effect of coxsackievirus B3 (CVB3), a positive single-strand RNA virus, on the activation of the NLRP3 inflammasome in macrophages. CVB3-infected mice had significantly lower production of IL-1ß and a lower level of NLRP3 in the small intestine after LPS stimulation. Furthermore, we found that CVB3 infection inhibited NLRP3 inflammasome activation and IL-1ß production in macrophages by suppressing the NF-κB signaling pathway and ROS production. Additionally, CVB3 infection increased the susceptibility of mice to Escherichia coli infection by decreasing IL-1ß production. Collectively, our study revealed a novel mechanism of NLRP3 inflammasome activation by suppressing the NF-κB pathway and ROS production in LPS-induced macrophages. Our findings may provide new ideas for antiviral treatment and drug development for CVB3 infection.


Asunto(s)
Inflamasomas , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Antivirales/farmacología
16.
Environ Sci Pollut Res Int ; 30(15): 43950-43961, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680722

RESUMEN

In the present research work, a highly recyclable catalyst of Ag-based agarose (HRC-Ag/Agar) hydrogel was successfully fabricated through a simple and efficient in situ reduction method without the aid of additional surface active agent. The interaction between the rich hydroxyl functional (-OH) groups in agarose and Ag can effectively control the growth and dispersion of Ag nanoparticles (NPs) in the HRC-Ag/Agar hydrogel and keep Ag NPs free from chemical contamination, which also guarantees the reusability of HRC-Ag/Agar hydrogel as catalysts. HRC-Ag/Agar hydrogel without freeze drying and calcination was investigated for their potential applications as highly active/recyclable catalysts in reducing aromatic organic pollutants (p-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (RhB)) by KBH4. The optimal HRC-Ag/Agar-1.9 hydrogel can complete the catalytic reduction of 4-NP within 11 min. Moreover, HRC-Ag/Agar-1.9 hydrogel achieves the high conversion rate (> 99%) through ten catalytic runs. Similarly, HRC-Ag/Agar-1.9 hydrogel was able to achieve a reduction efficiency of RhB at 98% within 17 min and that of MB at 95% within 40 min. The advantages of simple synthetic procedure, no secondary pollution, strong stability and easily separated make the HRC-Ag/Agar hydrogel have great potential prospect for environmental applications.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Sefarosa , Agar , Hidrogeles , Plata , Azul de Metileno
17.
J Vis Exp ; (194)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092820

RESUMEN

This study aims to show the estrogen-like effect of Bazi Bushen capsule (BZBS), a Chinese herbal compound, in ovariectomized mice. Female Sprague-Dawley (SD) rats were randomly divided into six groups: a sham-operated group, a model group (OVX), a progynova group, and BZBS groups (1, 2, and 4 d/kg/d). An ovariectomy was performed on all rats except those in the sham-operated group. Micro-computed tomography (micro-CT) scanning, hematoxylin and eosin (H&E) staining, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) detection were performed after 4 months of BZBS treatment. As a result, compared with the OVX group, rats treated with BZBS showed an increased number and area of trabecular bone and bone marrow cells, and a decreased number of adipose cells. The bone volume, trabecular number, and trabecular thickness of the right tibia in the medication groups increased and the trabecular space decreased. The 17ß-estradiol and serum calcium levels in the medication groups were elevated, but the levels of serum phosphorus, sclerostin, ß-CTX, and TRACP-5b were decreased. In the medication groups, the RANKL and sclerostin levels were decreased, while the osteoprotegerin (OPG) level was increased. In conclusion, this protocol systematically evaluated the therapeutic effects and potential molecular mechanisms of Chinese herbal compounds in ovariectomized rats with a variety of techniques.


Asunto(s)
Estradiol , Tibia , Ratas , Femenino , Animales , Ratones , Ratas Sprague-Dawley , Microtomografía por Rayos X , Estradiol/farmacología , Estrógenos/farmacología
18.
Chem Commun (Camb) ; 59(31): 4680-4683, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36995105

RESUMEN

Possessing dual-targeted agents toward the lysosome and cancer cells, a ternary supramolecular assembly was constructed by a morpholine-modified permethyl ß-cyclodextrin, sulfonated porphyrin, and folic acid-modified chitosan via multivalent interactions. As compared with free porphyrin, the obtained ternary supramolecular assembly showed promoted photodynamic effect and achieved dual-targeted precise imaging in cancer cells.


Asunto(s)
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Antineoplásicos/farmacología , Porfirinas/farmacología , Morfolinas/farmacología
19.
Biomed Pharmacother ; 160: 114384, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764132

RESUMEN

Bazi Bushen (BZBS), a traditional Chinese medicine, has been proven effective in the treatment of age-related disease in mouse models. However, whether its therapeutic effects are due to antiaging mechanism has not yet been explored. In the present study, we investigated the antiaging effects of BZBS in naturally aging mice by using behavioral tests, liver DNA methylome sequencing, methylation age estimation, and frailty index assessment. The methylome analysis revealed a decrease of mCpG levels in the aged mouse liver. BZBS treatment tended to restore age-associated methylation decline and prune the methylation pattern toward that of young mice. More importantly, BZBS significantly rejuvenated methylation age of the aged mice, which was computed by an upgraded DNA methylation clock. These results were consistent with enhanced memory and muscular endurance, as well as decreased frailty score and liver pathological changes. KEGG analysis together with aging-related database screening identified methylation-targeted pathways upon BZBS treatment, including oxidative stress, DNA repair, MAPK signaling, and inflammation. Upregulation of key effectors and their downstream effects on elevating Sod2 expression and diminishing DNA damage were further investigated. Finally, in vitro experiments with senescent HUVECs proved a direct effect of BZBS extracts on the regulation of methylation enzymes during cellular aging. In summary, our work has revealed for the first time the antiaging effects of BZBS by slowing the methylation aging. These results suggest that BZBS might have great potential to extend healthspan and also explored the mechanism of BZBS action in the treatment of age-related diseases.


Asunto(s)
Epigénesis Genética , Fragilidad , Animales , Ratones , Fragilidad/genética , Envejecimiento/genética , Metilación de ADN , Senescencia Celular
20.
Front Microbiol ; 14: 1320202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260869

RESUMEN

Purpose: The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods: In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results: BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion: BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA