Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(41): e2122042119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191216

RESUMEN

The microfossil record demonstrates the presence of eukaryotic organisms in the marine ecosystem by about 1,700 million years ago (Ma). Despite this, steranes, a biomarker indicator of eukaryotic organisms, do not appear in the rock record until about 780 Ma in what is known as the "rise of algae." Before this, it is argued that eukaryotes were minor ecosystem members, with prokaryotes dominating both primary production and ecosystem dynamics. In this view, the rise of algae was possibly sparked by increased nutrient availability supplying the higher nutrient requirements of eukaryotic algae. Here, we challenge this view. We use a size-based ecosystem model to show that the size distribution of preserved eukaryotic microfossils from 1,700 Ma and onward required an active eukaryote ecosystem complete with phototrophy, osmotrophy, phagotrophy, and mixotrophy. Model results suggest that eukaryotes accounted for one-half or more of the living biomass, with eukaryotic algae contributing to about one-half of total marine primary production. These ecosystems lived with deep-water phosphate levels of at least 10% of modern levels. The general lack of steranes in the pre-780-Ma rock record could be a result of poor preservation.


Asunto(s)
Ecosistema , Eucariontes , Biomarcadores , Fósiles , Fosfatos , Agua
2.
Microb Ecol ; 73(2): 259-270, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27645137

RESUMEN

The genus Pseudochattonella has become a frequent component of late winter-early spring phytoplankton community in Scandinavian waters, causing extensive fish kills and substantial economic losses. One of currently two recognised species, P. farcimen, is often abundant prior to the diatom spring bloom. Recent field studies have revealed that P. farcimen and P. verruculosa have a period of overlap in their temperature ranges and thus their seasonal occurrences. Using laboratory cultures, we investigated the seasonal succession and growth of P. farcimen and P. verruculosa in both mono- and mixed-culture using the recently developed Pseudochattonella 'qPCR subtraction method', which for the first time allowed the simultaneous enumeration of these morphologically indistinguishable species in mixed assemblages. We examined how these species interacted over four different temperatures (5, 8, 11 and 15 °C). The observed growth rates and cell yields varied with temperature revealing their preferred temperature optima. P. farcimen was able to achieve positive net growth over all temperatures, while P. verruculosa failed to grow below 11 °C. Growth responses were statistically different between mono- and mixed-cultures with the outcome of these interactions being temperature-dependent. Nutrients (nitrate and phosphate) and pH levels were also measured throughout the growth experiments to better understand how these factors influenced growth of both species. P. verruculosa was shown to be less sensitive to high pH as growth ceased at pH 9.1, whereas P. farcimen stopped growing at pH 8.4. Understanding the influence of abiotic factors (e.g. temperature, pH and competition) on growth rates allows for a better understanding and prediction of phytoplankton community dynamics.


Asunto(s)
Estramenopilos/crecimiento & desarrollo , Estramenopilos/metabolismo , Recuento de Células , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , ADN/análisis , Cartilla de ADN , Diatomeas , Concentración de Iones de Hidrógeno , Técnicas de Sonda Molecular , Nitratos/metabolismo , Fosfatos/metabolismo , Fitoplancton/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Países Escandinavos y Nórdicos , Estaciones del Año , Agua de Mar , Estramenopilos/clasificación , Estramenopilos/genética , Temperatura
3.
J Phycol ; 52(2): 174-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27037583

RESUMEN

The ichthyotoxic genus Pseudochattonella forms recurrent extensive blooms in coastal waters in Japan, New Zealand and Northern Europe. It comprises of two morphologically similar species, P. verruculosa and P. farcimen, which complicates visual species identification and enumeration of live and fixed material. Primers designed previously could not quantitatively distinguish species in mixed assemblages. To address this issue we developed two primer sets: one revealed itself to be genus specific for Pseudochattonella and the other species-specific for P. verruculosa. By subtracting cell estimates for P. verruculosa from combined results we could calculate cell numbers for P. farcimen. This approach has overcome the challenges posed by the very limited sequence availability and low gene variability between the two species. The qPCR assay was extensively tested for specificity, efficiency and sensitivity over an entire growth cycle in both single and mixed assemblages. Comparison of cell abundance estimates obtained by qPCR assay and microscopy showed no statistically significant difference until stationary and death phases. The assay was also tested on environmental samples collected during a small Pseudochattonella bloom in Denmark in March-April 2015. It was impossible to distinguish P. farcimen and P. verruculosa by light microscopy but qPCR showed both species were present. The two methods provided nearly identical cell numbers but the assay provided discrimination and enumeration of both species.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dosificación de Gen , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estramenopilos/crecimiento & desarrollo , Estramenopilos/genética , Recuento de Células , ADN Ribosómico/genética , Reproducibilidad de los Resultados , Estramenopilos/citología
4.
Nutr Cancer ; 67(7): 1201-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26381237

RESUMEN

Spices are used worldwide, particularly in the Asian and Middle Eastern countries, and considered protective against degenerative diseases, including cancer. Here, we report the efficacy of aqueous and non-aqueous extracts of 11 Apiaceae spices for free radical-scavenging activity and to inhibit cytochrome P450s in two separate reactions involving: 1) 4-hydroxy-17ß-estradiol (4E2), DNA, and CuCl2 and 2) 17ß-estradiol, rat liver microsomes, cofactors, DNA and CuCl2. Oxidative DNA adducts resulting from redox cycling of 4E2 were analyzed by (32)P-postlabeling. Aqueous (5 mg/ml) and non-aqueous extracts (6 mg/ml) substantially inhibited (83-98%) formation of DNA adducts in the microsomal reaction. However, in nonmicrosomal reaction, only aqueous extracts showed the inhibitory activity (83-96%). Adduct inhibition was also observed at five-fold lower concentrations of aqueous extracts of cumin (60%) and caraway (90%), and 10-fold lower concentrations of carrot seeds (76%) and ajowan (90%). These results suggests the presence of 2 groups of phytochemicals: polar compounds that have free radical-scavenging activity and lipophilic compounds that selectively inhibit P450 activity associated with estrogen metabolism. Because most of these Apiaceae spices are used widely with no known toxicity, the phytochemicals from the Apiaceae spices used in foods may be potentially protective against estrogen-mediated breast cancer.


Asunto(s)
Antioxidantes/farmacología , Apiaceae/química , Extractos Vegetales/farmacología , Especias , Animales , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Aductos de ADN , Daño del ADN/efectos de los fármacos , Estradiol/metabolismo , Estrógenos de Catecol/metabolismo , Estrógenos de Catecol/farmacocinética , Depuradores de Radicales Libres/farmacología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Extractos Vegetales/química , Ratas , Testículo/efectos de los fármacos , Testículo/metabolismo
5.
mSphere ; 6(1)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536324

RESUMEN

Climate change is expanding marine oxygen minimum zones (OMZs), while anthropogenic nutrient input depletes oxygen concentrations locally. The effects of deoxygenation on animals are generally detrimental; however, some sponges (Porifera) exhibit hypoxic and anoxic tolerance through currently unknown mechanisms. Sponges harbor highly specific microbiomes, which can include microbes with anaerobic capabilities. Sponge-microbe symbioses must also have persisted through multiple anoxic/hypoxic periods throughout Earth's history. Since sponges lack key components of the hypoxia-inducible factor (HIF) pathway responsible for hypoxic responses in other animals, it was hypothesized that sponge tolerance to deoxygenation may be facilitated by its microbiome. To test this hypothesis, we determined the microbial composition of sponge species tolerating seasonal anoxia and hypoxia in situ in a semienclosed marine lake, using 16S rRNA amplicon sequencing. We discovered a high degree of cryptic diversity among sponge species tolerating seasonal deoxygenation, including at least nine encrusting species of the orders Axinellida and Poecilosclerida. Despite significant changes in microbial community structure in the water, sponge microbiomes were species specific and remarkably stable under varied oxygen conditions, which was further explored for Eurypon spp. 2 and Hymeraphia stellifera However, some symbiont sharing occurred under anoxia. At least three symbiont combinations, all including large populations of Thaumarchaeota, corresponded with deoxygenation tolerance, and some combinations were shared between some distantly related hosts. We propose hypothetical host-symbiont interactions following deoxygenation that could confer deoxygenation tolerance.IMPORTANCE The oceans have an uncertain future due to anthropogenic stressors and an uncertain past that is becoming clearer with advances in biogeochemistry. Both past and future oceans were, or will be, deoxygenated in comparison to present conditions. Studying how sponges and their associated microbes tolerate deoxygenation provides insights into future marine ecosystems. Moreover, sponges form the earliest branch of the animal evolutionary tree, and they likely resemble some of the first animals. We determined the effects of variable environmental oxygen concentrations on the microbial communities of several demosponge species during seasonal anoxia in the field. Our results indicate that anoxic tolerance in some sponges may depend on their symbionts, but anoxic tolerance was not universal in sponges. Therefore, some sponge species could likely outcompete benthic organisms like corals in future, reduced-oxygen ecosystems. Our results support the molecular evidence that sponges and other animals have a Neoproterozoic origin and that animal evolution was not limited by low-oxygen conditions.


Asunto(s)
Bacterias/genética , Lagos/microbiología , Microbiota/genética , Microbiota/fisiología , Poríferos/microbiología , Estaciones del Año , Anaerobiosis , Animales , Organismos Acuáticos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Cambio Climático , Variación Genética , Interacciones Microbiota-Huesped , Irlanda , Filogenia , Poríferos/clasificación , Poríferos/genética , Poríferos/fisiología
6.
PLoS One ; 15(10): e0234372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33091058

RESUMEN

There arose one of the most important ecological transitions in Earth's history approximately 750 million years ago during the middle Neoproterozoic Era (1000 to 541 million years ago, Ma). Biomarker evidence suggests that around this time there was a rapid shift from a predominantly bacterial-dominated world to more complex ecosystems governed by eukaryotic primary productivity. The resulting 'Rise of the algae' led to dramatically altered food webs that were much more efficient in terms of nutrient and energy transfer. Yet, what triggered this ecological shift? In this study we examined the theory that it was the alleviation of phosphorus (P) deficiency that gave eukaryotic alga the prime opportunity to flourish. We performed laboratory experiments on the cyanobacterium Synechocystis salina and the eukaryotic algae Tetraselmis suecica and examined their ability to compete for phosphorus. Both these organisms co-occur in modern European coastal waters and are not known to have any allelopathic capabilities. The strains were cultured in mono and mixed cultures in chemostats across a range of dissolved inorganic phosphorus (DIP) concentrations to reflect modern and ancient oceanic conditions of 2 µM P and 0.2 µM P, respectively. Our results show that the cyanobacteria outcompete the algae at the low input (0.2 µM P) treatment, yet the eukaryotic algae were not completely excluded and remained a constant background component in the mixed-culture experiments. Also, despite their relatively large cell size, the algae T. suecica had a high affinity for DIP. With DIP input concentrations resembling modern-day levels (2 µM), the eukaryotic algae could effectively compete against the cyanobacteria in terms of total biomass production. These results suggest that the availability of phosphorus could have influenced the global expansion of eukaryotic algae. However, P limitation does not seem to explain the complete absence of eukaryotic algae in the biomarker record before ca. 750 Ma.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Fósforo/metabolismo , Synechocystis/crecimiento & desarrollo , Algoritmos , Fosfatasa Alcalina/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Clorofila A/metabolismo , Chlorophyta/metabolismo , Medios de Cultivo/química , Synechocystis/metabolismo
7.
Harmful Algae ; 58: 51-58, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-28073458

RESUMEN

The marine genus Pseudochattonella is a recent addition to the list of fish killing microalgae. Currently two species are recognised (viz. P. verruculosa and P. farcimen) which both form recurrent coastal blooms sometimes overlapping in space and time. These events and their ecological and economic consequences have resulted in great interest and concern from marine biologists and the aquaculture industry. Since the first recorded blooms in Japanese (late 1980s), Scandinavian (1993) and Chilean (2004) waters numerous studies have focused on understanding the causative means of the fish killing. Mortality is probably due to Pseudochattonella discharging mucocysts that cause gill irritation and damage to the fish fills. Here, a review is provided of the literature on Pseudochattonella that covers the last ca. 25 years and focus on a number of topics relevant to understanding the general biology of the genus including ways to distinguish the two species. The literature addressing biogeography and known harmful events is evaluated and based on these findings an updated distribution map is proposed. P. farcimen is presently restricted to North European waters. Despite being very difficult to delineate based on morphology alone the two Pseudochattonella species seem to have separate growth optima. In laboratory experiments P. verruculosa consistently has higher temperature growth optima compared to P. farcimen though periods of overlap have been noted in the field. The review ends by proposing five areas with knowledge gaps and each of these could form the basis of future studies.


Asunto(s)
Organismos Acuáticos/fisiología , Microalgas/fisiología , Estramenopilos/fisiología , Animales , Acuicultura , Organismos Acuáticos/clasificación , Organismos Acuáticos/crecimiento & desarrollo , Chile , Peces , Floraciones de Algas Nocivas , Dinámica Poblacional , Especificidad de la Especie , Estramenopilos/clasificación , Estramenopilos/crecimiento & desarrollo
8.
Harmful Algae ; 53: 135-144, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-28073439

RESUMEN

The dinoflagellate Alexandrium produces paralytic shellfish poisoning toxins. The genus is globally distributed, with Scottish waters being of particular interest due to the co-occurrence of different species and strains. In Scottish waters, Alexandrium was historically thought to be dominated by the highly toxic (Group I) Alexandrium fundyense. However, the morphologically indistinguishable (Group III) Alexandrium tamarense has recently also been found to co-occur, raising important questions in relation to Alexandrium biogeography. To begin to address these, we investigated Alexandrium growth, yield and toxin production in a range of temperature conditions characteristics of present and potential future conditions, using a recently developed flow cytometry method that allowed, for the first time, simultaneous enumeration of the cryptic species in co-culture. Experiments were undertaken in a range of temperatures (12, 15, 18 and 21°C) in the phosphate (P) limiting conditions that promotes A. fundyense toxicity. Cell/biomass yield was greater for A. tamarense at all temperatures, with observed growth rates varying with temperature. Growth rather and yield were different in mono- and co-culture with the outcome of these interactions also being temperature dependent. For toxic A. fundyense, GTX-3, STX and NEO were the dominant analogues, but total toxicity, toxicity per cell and the number of, and relative proportion of, toxin analogues changed in relation to the onset of P limitation and also as a function of temperature, with the highest toxin concentrations per cell being observed at 12°C. Toxin concentrations were approximately double in P limited stationary phase compared to exponential growth. Toxin concentrations were lower in the co-cultures, indicating inhibition of production in the presence of non-toxic A. tamarense. The strong performance of A. tamarense is in co-culture at odds with the historical understanding that Scottish waters were dominated by A. fundyense and indicates that changes in water temperatures, and also potentially alleopathic interactions, will influence Alexandrium populations and hence the PSP toxicity threat to humans from shellfish.


Asunto(s)
Dinoflagelados/fisiología , Temperatura , Océano Atlántico , Dinámica Poblacional , Escocia , Agua de Mar/química
9.
Harmful Algae ; 48: 37-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29724474

RESUMEN

Harmful algal blooms (HAB) pose serious economic and health risks worldwide. Current methods of identification require high levels of taxonomic skill and can be highly time-consuming thus limiting sample throughput. So, new rapid and reliable methods for detection and enumeration of HAB species are required. Here we describe a high-throughput, multiplex-qPCR (M-qPCR) method using hydrolysis probe technology for the simultaneous detection of four HAB species commonly found in many coastal areas worldwide: Alexandrium tamarense, Karenia mikimotoi, Karlodinium veneficum and Prymnesium parvum. Primers and probes were species-specific and highly efficient when tested in simplex. Species were then added in succession and the assay conditions adjusted until all four species could be quantitatively evaluated simultaneously. Enumeration accuracy of the M-qPCR assay as a monitoring tool was evaluated using spiked natural environmental samples from Danish coastal waters. Comparison of estimates of cell abundances obtained by the M-qPCR technique with those obtained by light microscopy (Sedgwick Rafter technique) showed no statistically significant difference across a range of concentrations. We were also able to identify and enumerate target cells that would be below the detection limit of light microscopy making this a suitable method for early bloom detection or for low biomass species. With the development of molecular probes for a greater number of algal species M-qPCR will be of great benefit to phytoplankton monitoring programmes and the aquaculture industry worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA