Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 22(2): 180-185, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36732344

RESUMEN

Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches1-3. Molecular graphene nanoribbons4-6 now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes. Here we demonstrate the massive enhancement of the solubility of graphene nanoribbons by edge functionalization, to yield ultra-clean transport devices with sharp single-electron features. Strong electron-vibron coupling leads to a prominent Franck-Condon blockade, and the atomic definition of the edges allows identifying the associated transverse bending mode. These results demonstrate how molecular graphene can yield exceptionally clean electronic devices directly from solution. The sharpness of the electronic features opens a path to the exploitation of spin and vibrational properties in atomically precise graphene nanostructures.

2.
J Am Chem Soc ; 144(19): 8693-8706, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35503091

RESUMEN

The introduction of paramagnetic metal centers into a conjugated π-system is a promising approach toward engineering spintronic materials. Here, we report an investigation of two types of spin-bearing dysprosium(III) and gadolinium(III) porphyrin dimers: singly meso-meso-linked dimers with twisted conformations and planar edge-fused ß,meso,ß-linked tapes. The rare-earth spin centers sit out of the plane of the porphyrin, so that the singly linked dimers are chiral, and their enantiomers can be resolved, whereas the edge-fused tape complexes can be separated into syn and anti stereoisomers. We compare the crystal structures, UV-vis-NIR absorption spectra, electrochemistry, EPR spectroscopy, and magnetic behavior of these complexes. Low-temperature SQUID magnetometry measurements reveal intramolecular antiferromagnetic exchange coupling between the GdIII centers in the edge-fused dimers (syn isomer: J = -51 ± 2 MHz; anti isomer: J = -19 ± 3 MHz), whereas no exchange coupling is detected in the singly linked twisted complex. The phase-memory times, Tm, are in the range of 8-10 µs at 3 K, which is long enough to test quantum computational schemes using microwave pulses. Both the syn and anti Dy2 edge-fused tapes exhibit single-molecule magnetic hysteresis cycles at temperatures below 0.5 K with slow magnetization dynamics.

3.
Nat Commun ; 13(1): 4506, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922414

RESUMEN

Many spintronic devices rely on the presence of spin-polarized currents at zero magnetic field. This is often obtained by spin exchange-bias, where an element with long-range magnetic order creates magnetized states and displaces the hysteresis loop. Here we demonstrate that exchange-split spin states are observable and usable in the smallest conceivable unit: a single magnetic molecule. We use a redox-active porphyrin as a transport channel, coordinating a dysprosium-based single-molecule-magnet inside a graphene nano-gap. Single-molecule transport in magnetic field reveals the existence of exchange-split channels with different spin-polarizations that depend strongly on the field orientation, and comparison with the diamagnetic isostructural compound and milikelvin torque magnetometry unravels the role of the single-molecule anisotropy and the molecular orientation. These results open a path to using spin-exchange in molecular electronics, and offer a method to quantify the internal spin structure of single molecules in multiple oxidation states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA