Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chim Acta ; 1249: 340909, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-36868765

RESUMEN

Analysis of GC×GC-TOFMS data for large numbers of poorly-resolved peaks, and for large numbers of samples remains an enduring problem that hinders the widespread application of the technique. For multiple samples, GC×GC-TOFMS data for specific chromatographic regions manifests as a 4th order tensor of I mass spectral acquisitions, J mass channels, K modulations, and L samples. Chromatographic drift is common along both the first-dimension (modulations), and along the second-dimension (mass spectral acquisitions), while drift along the mass channel is for all practical purposes nonexistent. A number of solutions to handling GC×GC-TOFMS data have been proposed: these involve reshaping the data to make it amenable to either 2nd order decomposition techniques based on Multivariate Curve Resolution (MCR), or 3rd order decomposition techniques such as Parallel Factor Analysis 2 (PARAFAC2). PARAFAC2 has been utilised to model chromatographic drift along one mode, which has enabled its use for robust decomposition of multiple GC-MS experiments. Although extensible, it is not straightforward to implement a PARAFAC2 model that accounts for drift along multiple modes. In this submission, we demonstrate a new approach and a general theory for modelling data with drift along multiple modes, for applications in multidimensional chromatography with multivariate detection. The proposed model captures over 99.9% of variance for a synthetic data set, presenting an extreme example of peak drift and co-elution across two modes of separation.

2.
J Chromatogr A ; 1682: 463499, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36126562

RESUMEN

There are many challenges associated with analysing gas chromatography - mass spectrometry (GC-MS) data. Many of these challenges stem from the fact that electron ionization (EI) can make it difficult to recover molecular information due to the high degree of fragmentation with concomitant loss of molecular ion signal. With GC-MS data there are often many common fragment ions shared among closely-eluting peaks, necessitating sophisticated methods for analysis. Some of these methods are fully automated, but make some assumptions about the data which can introduce artifacts during the analysis. Chemometric methods such as Multivariate Curve Resolution (MCR), or Parallel Factor Analysis (PARAFAC/PARAFAC2) are particularly attractive, since they are flexible and make relatively few assumptions about the data - ideally resulting in fewer artifacts. These methods do require expert user intervention to determine the most relevant regions of interest and an appropriate number of components, k, for each region. Automated region of interest selection is needed to permit automated batch processing of chromatographic data with advanced signal deconvolution. Here, we propose a new method for automated, untargeted region of interest selection that accounts for the multivariate information present in GC-MS data to select regions of interest based on the ratio of the squared first, and second singular values from the Singular Value Decomposition (SVD) of a window that moves across the chromatogram. Assuming that the first singular value accounts largely for signal, and that the second singular value accounts largely for noise, it is possible to interpret the relationship between these two values as a probabilistic distribution of Fisher Ratios. The sensitivity of the algorithm was tested by investigating the concentration at which the algorithm can no longer pick out chromatographic regions known to contain signal. The algorithm achieved detection of features in a GC-MS chromatogram at concentrations below 10 pg on-column. The resultant probabilities can be interpreted as regions that contain features of interest.


Asunto(s)
Algoritmos , Análisis Factorial , Cromatografía de Gases y Espectrometría de Masas/métodos
3.
Phytochemistry ; 195: 113052, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34968885

RESUMEN

Dunaliella tertiolecta is a marine microalgae that has been studied extensively as a potential carbon-neutral biofuel source (Tang et al., 2011). Microalgae oil contains high quantities of energy-rich fatty acids and lipids, but is not yet commercially viable as an alternative fuel. Carefully optimised growth conditions, and more recently, algal-bacterial co-cultures have been explored as a way of improving the yield of D. tertiolecta microalgae oils. The relationship between the host microalgae and bacterial co-cultures is currently poorly understood. Here, a complete workflow is proposed to analyse the global metabolomic profile of co-cultured D. tertiolectra and Phaeobacter italicus R11, which will enable researchers to explore the chemical nature of this relationship in more detail. To the best of the authors' knowledge this study is one of the first of its kind, in which a pipeline for an entirely untargeted analysis of the algal metabolome is proposed using a practical sample preparation, introduction, and data analysis routine.


Asunto(s)
Microalgas , Técnicas de Cocultivo , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Rhodobacteraceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA