Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(4): 042501, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121400

RESUMEN

We investigated decays of ^{51,52,53}K at the ISOLDE Decay Station at CERN in order to understand the mechanism of the ß-delayed neutron-emission (ßn) process. The experiment quantified neutron and γ-ray emission paths for each precursor. We used this information to test the hypothesis, first formulated by Bohr in 1939, that neutrons in the ßn process originate from the structureless "compound nucleus." The data are consistent with this postulate for most of the observed decay paths. The agreement, however, is surprising because the compound-nucleus stage should not be achieved in the studied ß decay due to insufficient excitation energy and level densities in the neutron emitter. In the ^{53}K ßn decay, we found a preferential population of the first excited state in ^{52}Ca that contradicted Bohr's hypothesis. The latter was interpreted as evidence for direct neutron emission sensitive to the structure of the neutron-unbound state. We propose that the observed nonstatistical neutron emission proceeds through the coupling with nearby doorway states that have large neutron-emission probabilities. The appearance of "compound-nucleus" decay is caused by the aggregated small contributions of multiple doorway states at higher excitation energy.

2.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505957

RESUMEN

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA