Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Epilepsia ; 65(6): 1768-1776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587282

RESUMEN

OBJECTIVE: Recent studies have identified brain somatic variants as a cause of focal epilepsy. These studies relied on resected tissue from epilepsy surgery, which is not available in most patients. The use of trace tissue adherent to depth electrodes used for stereo electroencephalography (EEG) has been proposed as an alternative but is hampered by the low cell quality and contamination by nonbrain cells. Here, we use our improved depth electrode harvesting technique that purifies neuronal nuclei to achieve molecular diagnosis in a patient with focal cortical dysplasia (FCD). METHODS: Depth electrode tips were collected, pooled by brain region and seizure onset zone, and nuclei were isolated and sorted using fluorescence-activated nuclei sorting (FANS). Somatic DNA was amplified from neuronal and astrocyte nuclei using primary template amplification followed by exome sequencing of neuronal DNA from the affected pool, unaffected pool, and saliva. The identified variant was validated using droplet digital polymerase chain reaction (PCR). RESULTS: An 11-year-old male with drug-resistant genetic-structural epilepsy due to left anterior insula FCD had seizures from age 3 years. Stereo EEG confirmed seizure onset in the left anterior insula. The two anterior insula electrodes were combined as the affected pool and three frontal electrodes as the unaffected pool. FANS isolated 140 neuronal nuclei from the affected and 245 neuronal nuclei from the unaffected pool. A novel somatic missense MTOR variant (p.Leu489Met, CADD score 23.7) was identified in the affected neuronal sample. Droplet digital PCR confirmed a mosaic gradient (variant allele frequency = .78% in affected neuronal sample; variant was absent in all other samples). SIGNIFICANCE: Our findings confirm that harvesting neuronal DNA from depth electrodes followed by molecular analysis to identify brain somatic variants is feasible. Our novel method represents a significant improvement compared to the previous method by focusing the analysis on high-quality cells of the cell type of interest.


Asunto(s)
Electroencefalografía , Malformaciones del Desarrollo Cortical , Neuronas , Serina-Treonina Quinasas TOR , Humanos , Masculino , Niño , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/cirugía , Electroencefalografía/métodos , Serina-Treonina Quinasas TOR/genética , ADN/genética , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Mosaicismo , Epilepsias Parciales/genética , Epilepsias Parciales/cirugía , Displasia Cortical Focal
2.
Anal Biochem ; 652: 114675, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390328

RESUMEN

Inclusion bodies (IBs) are large, insoluble aggregates that often form during the overexpression of proteins in bacteria. These aggregates are of broad fundamental and practical significance, for recombinant protein preparation and due to their relevance to aggregation-related medical conditions and their recent emergence as promising functional nanomaterials. Despite their significance, high resolution knowledge of IB structure remains very limited. Such knowledge will advance understanding and control of IB formation and properties in myriad practical applications. Here, we report a detailed quenched hydrogen-deuterium amide exchange (qHDX) method with NMR readout to define the structure of IBs at the level of individual residues throughout the protein. Applying proper control of experimental conditions, such as sample pH, water content, temperature, and intrinsic rate of amide exchange, yields in depth results for these cellular protein aggregates. qHDX results illustrated for Cu, Zn superoxide dismutase 1 (SOD1) and Adnectins show their IBs include native-like structure and some but not all mutations alter IB structure.


Asunto(s)
Hidrógeno , Cuerpos de Inclusión , Amidas/química , Deuterio/química , Hidrógeno/química , Agregado de Proteínas , Proteínas
3.
Angew Chem Int Ed Engl ; 61(24): e202112645, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35316563

RESUMEN

Protein aggregation is central to aging, disease and biotechnology. While there has been recent progress in defining structural features of cellular protein aggregates, many aspects remain unclear due to heterogeneity of aggregates presenting obstacles to characterization. Here we report high-resolution analysis of cellular inclusion bodies (IBs) of immature human superoxide dismutase (SOD1) mutants using NMR quenched amide hydrogen/deuterium exchange (qHDX), FTIR and Congo red binding. The extent of aggregation is correlated with mutant global stability and, notably, the free energy of native dimer dissociation, indicating contributions of native-like monomer associations to IB formation. This is further manifested by a common pattern of extensive protection against H/D exchange throughout nine mutant SOD1s despite their diverse characteristics. These results reveal multiple aggregation-prone regions in SOD1 and illuminate how aggregation may occur via an ensemble of pathways.


Asunto(s)
Cuerpos de Inclusión , Superóxido Dismutasa , Humanos , Cuerpos de Inclusión/metabolismo , Espectroscopía de Resonancia Magnética , Mutación , Agregado de Proteínas , Pliegue de Proteína , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1859(6): 445-458, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567354

RESUMEN

The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.


Asunto(s)
Proteínas de Transporte de Catión/deficiencia , Proteínas de la Membrana/deficiencia , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas Transportadoras de Cobre , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Chaperonas Moleculares/genética , Fosforilación Oxidativa , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Life Sci Alliance ; 6(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914268

RESUMEN

Single-cell technologies are a method of choice to obtain vast amounts of cell-specific transcriptional information under physiological and diseased states. Myogenic cells are resistant to single-cell RNA sequencing because of their large, multinucleated nature. Here, we report a novel, reliable, and cost-effective method to analyze frozen human skeletal muscle by single-nucleus RNA sequencing. This method yields all expected cell types for human skeletal muscle and works on tissue frozen for long periods of time and with significant pathological changes. Our method is ideal for studying banked samples with the intention of studying human muscle disease.


Asunto(s)
Núcleo Celular , Perfilación de la Expresión Génica , Humanos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Análisis de Secuencia de ARN/métodos , Músculo Esquelético
6.
Front Neurol ; 13: 914411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812094

RESUMEN

In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.

7.
Front Neurol ; 9: 942, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467490

RESUMEN

GNE myopathy is characterized by distal muscle weakness, and caused by recessive mutations in GNE. Its onset is characteristically in young adulthood, although a broad spectrum of onset age is known to exist. A large number of mutations in GNE are pathogenic and this clinical phenotype can be difficult to differentiate clinically from other late-onset myopathies. We describe two families with novel mutations in GNE, and describe their clinical and MRI features. We also describe the presence of striking paraspinal muscle involvement on MRI of the lumbar spine, which is an under-recognized feature of GNE myopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA