Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Food Microbiol ; 106: 103757, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690455

RESUMEN

In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.


Asunto(s)
Desinfectantes , Listeria monocytogenes , Animales , Compuestos de Benzalconio/farmacología , Cloruros , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Ecosistema , Genómica
2.
Euro Surveill ; 21(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-26898350

RESUMEN

Colistin resistance was investigated in 1,696 isolates collected from 2007 to 2014 within the frame of the French livestock antimicrobial resistance surveillance programme. The mcr-1 gene was detected in all commensal Escherichia coli isolates with a minimum inhibitory concentration to colistin above the 2 mg/L cut-off value (n=23). In poultry, mcr-1 prevalence was 5.9% in turkeys and 1.8% in broilers in 2014. In pigs, investigated in 2013, this prevalence did not exceed 0.5%. These findings support that mcr-1 has spread in French livestock.


Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Infecciones por Escherichia coli/sangre , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Animales , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Genotipo , Humanos , Ganado , Carne/microbiología , Pruebas de Sensibilidad Microbiana , Prevalencia , Porcinos , Pavos
3.
Front Cell Infect Microbiol ; 13: 1324991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149014

RESUMEN

Antimicrobial resistance is a critical public health issue that requires a thorough understanding of the factors that influence the selection and spread of antibiotic-resistant bacteria. Biocides, which are widely used in cleaning and disinfection procedures in a variety of settings, may contribute to this resistance by inducing similar defense mechanisms in bacteria against both biocides and antibiotics. However, the strategies used by bacteria to adapt and develop cross-resistance remain poorly understood, particularly within biofilms -a widespread bacterial habitat that significantly influences bacterial tolerance and adaptive strategies. Using a combination of adaptive laboratory evolution experiments, genomic and RT-qPCR analyses, and biofilm structural characterization using confocal microscopy, we investigated in this study how Escherichia coli biofilms adapted after 28 days of exposure to three biocidal active substances and the effects on cross-resistance to antibiotics. Interestingly, polyhexamethylene biguanide (PHMB) exposure led to an increase of gentamicin resistance (GenR) phenotypes in biofilms formed by most of the seven E. coli strains tested. Nevertheless, most variants that emerged under biocidal conditions did not retain the GenR phenotype after removal of antimicrobial stress, suggesting a transient adaptation (adaptive resistance). The whole genome sequencing of variants with stable GenR phenotypes revealed recurrent mutations in genes associated with cellular respiration, including cytochrome oxidase (cydA, cyoC) and ATP synthase (atpG). RT-qPCR analysis revealed an induction of gene expression associated with biofilm matrix production (especially curli synthesis), stress responses, active and passive transport and cell respiration during PHMB exposure, providing insight into potential physiological responses associated with adaptive crossresistance. In addition, confocal laser scanning microscopy (CLSM) observations demonstrated a global effect of PHMB on biofilm architectures and compositions formed by most E. coli strains, with the appearance of dense cellular clusters after a 24h-exposure. In conclusion, our results showed that the PHMB exposure stimulated the emergence of an adaptive cross-resistance to gentamicin in biofilms, likely induced through the activation of physiological responses and biofilm structural modulations altering gradients and microenvironmental conditions in the biological edifice.


Asunto(s)
Desinfectantes , Escherichia coli , Gentamicinas/farmacología , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Biopelículas , Bacterias , Desinfectantes/farmacología
4.
Front Microbiol ; 13: 864576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663878

RESUMEN

The foodborne pathogen, Listeria monocytogenes, (Lm), frequently undergoes selection pressure associated with the extensive use of disinfectants, such as quaternary ammonium compounds, which are widely used in food processing plants. The repeated exposure to sub-inhibitory biocide concentrations can induce increased tolerance to these compounds, but can also trigger the development of antibiotic resistance, and both increase the risk of food contamination and persistence in food production environments. Although the acquisition of genes can explain biocide tolerance, the genetic mechanisms underlying the adaptive cross-resistance to antibiotics remain unclear. We previously showed that repeated exposure to benzalkonium chloride (BC) and didecyldimethyl ammonium chloride (DDAC) led to reduced susceptibility to ciprofloxacin in Lm strains from diverse sources. Here, we compared the genomes of 16 biocide-adapted and 10 parental strains to identify the molecular mechanisms of fluoroquinolone cross-resistance. A core genome SNP analysis identified various mutations in the transcriptional regulator fepR (lmo2088) for 94% of the adapted strains and mutations in other effectors at a lower frequency. FepR is a local repressor of the MATE fluoroquinolone efflux pump FepA. The impact of the mutations on the structure and function of the protein was assessed by performing in silico prediction and protein homology modeling. Our results show that 75% of the missense mutations observed in fepR are located in the HTH domain of the protein, within the DNA interaction site. These mutations are predicted to reduce the activity of the regulator, leading to the overexpression of the efflux pump responsible for the ciprofloxacin-enhanced resistance.

5.
J Agric Food Chem ; 70(51): 16106-16116, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524955

RESUMEN

The valorization of poultry byproducts, like feathers (processed to feather meal), in animal feed could contribute to the presence of veterinary drugs, including antibiotics. An animal study was carried out to study the fate of sulfadiazine, trimethoprim, and oxytetracycline in feathers, plasma, and droppings of broiler chickens. Cage and floor housing, different from current farm practices, were studied. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A longer presence of antibiotics was observed in feathers compared to plasma, with sulfadiazine being present the most. The internal presence (via blood) and the external presence (via droppings) of antibiotics in/on feathers were shown. Analysis of Escherichia coli populations, from droppings and feathers, highlighted that resistant bacteria could be transferred from droppings to feathers in floor-housed animals. The overall results suggest that feathers are a potential reservoir of antimicrobial residues and could contribute to the selection of antibiotic-resistant bacteria in the environment, animals, and humans.


Asunto(s)
Antibacterianos , Oxitetraciclina , Humanos , Animales , Antibacterianos/análisis , Oxitetraciclina/análisis , Pollos , Plumas/química , Sulfadiazina/farmacología , Sulfadiazina/análisis , Trimetoprim/farmacología , Trimetoprim/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
6.
Sci Data ; 9(1): 190, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484273

RESUMEN

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Listeria monocytogenes , Listeriosis , Animales , Ecosistema , Enfermedades Transmitidas por los Alimentos/microbiología , Listeria monocytogenes/genética , Listeriosis/epidemiología , Listeriosis/microbiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-33301356

RESUMEN

The administration of nitrofurans to livestock to treat or prevent animal diseases has been banned in the EU for the production of food of animal origin. The corresponding marker residues are tissue-related metabolites AMOZ, AHD, SEM, and AOZ. The MRPL (minimum required performance limit)/RPA (Reference point for action) was set at 1 µg kg-1 in the EU. Thus, all the laboratories involved in the control of nitrofuran metabolites must detect at least at this analytical limit of performance. The objectives of the work reported here were to evaluate the performance of ELISA kits from two different manufacturers (R-Biopharm, Germany; Europroxima, the Netherlands) for the individual screening of the four nitrofuran metabolites (AOZ, AMOZ; AHD; and SEM) in aquaculture products (fish, shrimps), and then to validate the kits according to the European Decision EC/2002/657 and to the European guideline for the validation of screening methods. The false positive rates were below 9 % for the kits from both manufacturers. The detection capabilities CCß determined were all below the current RPA (1 µg/kg). However, regarding the updated RPA at 0.5 µg/kg that shall apply in 2022, the AMOZ and SEM kits from R-Biopharm and the SEM kit from Europroxima will not be able to reach it.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Productos Pesqueros/análisis , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Nitrofuranos/análisis , Animales , Acuicultura , Evaluación Preclínica de Medicamentos , Unión Europea , Peces , Nitrofuranos/metabolismo
8.
Antibiotics (Basel) ; 10(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068600

RESUMEN

Antibiotic resistance is one of the most important issues facing modern medicine. Some biocides have demonstrated the potential of selecting resistance to antibiotics in bacteria, but data are still very scarce and it is important to better identify the molecules concerned and the underlying mechanisms. This study aimed to assess the potential of polyhexamethylene biguanide (PHMB), a widely used biocide in a variety of sectors, to select antibiotic resistance in Escherichia coli grown in biofilms. Biofilms were grown on inox coupons and then exposed daily to sublethal concentrations of PHMB over 10 days. Antibiotic-resistant variants were then isolated and characterized phenotypically and genotypically to identify the mechanisms of resistance. Repeated exposure to PHMB led to the selection of an E. coli variant (Ec04m1) with stable resistance to gentamycin (8-fold increase in minimum inhibitory concentration (MIC) compared to the parental strain. This was also associated with a significant decrease in the growth rate in the variant. Sequencing and comparison of the parental strain and Ec04m1 whole genomes revealed a nonsense mutation in the aceE gene in the variant. This gene encodes the pyruvate dehydrogenase E1 component of the pyruvate dehydrogenase (PDH) complex, which catalyzes the conversion of pyruvate to acetyl-CoA and CO2. A growth experiment in the presence of acetate confirmed the role of this mutation in a decreased susceptibility to both PHMB and gentamicin (GEN) in the variant. This work highlights the potential of PHMB to select resistance to antibiotics in bacteria, and that enzymes of central metabolic pathways should be considered as a potential target in adaptation strategies, leading to cross-resistance toward biocides and antibiotics in bacteria.

9.
Pathogens ; 10(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670643

RESUMEN

In this contribution, the antimicrobial susceptibility toward 11 antibiotics and four biocides of a panel of 205 Listeria monocytogenes (Lm) strains isolated from different ecological niches (i.e., food, animals and natural environment) was evaluated. The impact of exposure to biocides on the antibiotic susceptibilities of Lm was also investigated. Lm strains isolated from food exhibited overall a lower susceptibility (higher minimal inhibitory concentrations, MIC) for ammonium quaternary compounds (QACs) and peracetic acid (PAC) than strains isolated from animals and natural environments. Conversely, the ecological origins of Lm strains did not significantly affect their susceptibilities towards antibiotics. Interestingly, repeated exposure to QACs recurrently led to a decrease in susceptibility toward ciprofloxacin (CIP), a fluoroquinolone antibiotic, largely used in human medicine. Moreover, these lower levels of susceptibility to CIP remained stable in most Lm strains even after subcultures without biocide selection pressure, suggesting an adaptation involving modifications at the genetic level. Results underlined the ability of Lm to adapt to biocides, especially QACs, and the potential link between this adaptation and the selection of resistance toward critical antibiotics such as ciprofloxacin. These data support a potential role of the extensive use of QACs from "farm to fork" in the selection of biocide and antibiotic resistance in pathogenic bacteria such as Lm.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32870104

RESUMEN

Colistin is a polypeptide antibiotic mainly used in porcine and poultry to treat gastrointestinal infections. It has been included by the World Health Organisation (WHO) in the list of critically important human antibiotics of high priority for antimicrobial resistance since 2017. Therefore, it is necessary to develop specific and sensitive screening methods for this molecule. Screening for colistin with immunoassays is an interesting alternative to LC-MS/MS screening methods. The performance of three commercially available ELISA kits was evaluated in poultry and porcine muscles for the detection of colistin in regards to its European maximum residue limit (MRL) (150 µg/kg). The applicability of the three ELISA kits to the detection of colistin at or below the MRL in porcine and poultry muscles was demonstrated. The detection capabilities (CCß) of two kits were or lower than or equal to the MRL (150 µg/kg). The lowest detection capability (30 µg/kg) was achieved with the third ELISA kit. The specificity of the three kits was very satisfactory (false positive rates 0%). The three kits are very specific for the detection of colistin (colistin A and B) and polymyxin B.


Asunto(s)
Colistina/análisis , Residuos de Medicamentos/análisis , Ensayo de Inmunoadsorción Enzimática , Contaminación de Alimentos/análisis , Músculos/química , Animales , Evaluación Preclínica de Medicamentos , Europa (Continente) , Aves de Corral , Porcinos
11.
FEMS Microbiol Lett ; 367(7)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267937

RESUMEN

The ready-to-eat products can be contaminated during processing by pathogen or spoilage bacteria, which persist in the industrial environment. Some bacterial species are able to form biofilms which protect them from environmental conditions. To check the bacterial contamination of the surfaces in the food industries, the professionals must regularly use surface sampling methods to detect the pathogen such as Listeria monocytogenes or the spoilage such as Pseudomonas fluorescens. In 2010, we designed and carried out a European survey to collect surface sampling information to detect or enumerate L. monocytogenes in food processing plants. A total of 137 questionnaires from 14 European Union Member States were returned. The outcome of this survey showed that the professionals preferred friction sampling methods with gauze pad, swab and sponges versus contact sampling methods. After this survey, we compared the effectiveness of these three friction sampling methods and the contact plates, as recommended in the standard EN ISO 18593 that was revised in 2018, on the recovery of L. monocytogenes and of P. fluorescens in mono-specie biofilms. This study showed no significant difference between the effectiveness of the four sampling methods to detach the viable and culturable bacterial population of theses mono-specie biofilms.


Asunto(s)
Técnicas Bacteriológicas/normas , Industria de Alimentos/métodos , Microbiología de Alimentos/métodos , Listeria monocytogenes/aislamiento & purificación , Pseudomonas fluorescens/aislamiento & purificación , Carga Bacteriana , Biopelículas , Europa (Continente) , Manipulación de Alimentos
12.
Int J Antimicrob Agents ; 56(4): 106131, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763373

RESUMEN

BACKGROUND: High antimicrobial use (AMU) and antimicrobial resistance (AMR) in veal calves remain a source of concern. As part of the EFFORT project, the association between AMU and the abundance of faecal antimicrobial resistance genes (ARGs) in veal calves in three European countries was determined. METHODS: In 2015, faecal samples of veal calves close to slaughter were collected from farms located in France, Germany and the Netherlands (20 farms in France, 20 farms in the Netherlands and 21 farms in Germany; 25 calves per farm). Standardized questionnaires were used to record AMU and farm characteristics. In total, 405 faecal samples were selected for DNA extraction and quantitative polymerase chain reaction to quantify the abundance (16S normalized concentration) of four ARGs [aph(3')-III, ermB, sul2 and tetW] encoding for resistance to frequently used antimicrobials in veal calves. Multiple linear mixed models with random effects for country and farm were used to relate ARGs to AMU and farm characteristics. RESULTS: A significant positive association was found between the use of trimethoprim/sulfonamides and the concentration of sul2 in faeces from veal calves. A higher weight of calves on arrival at the farm was negatively associated with aph(3')-III and ermB. Lower concentrations of aph(3')-III were found at farms with non-commercial animals present. Furthermore, farms using only water for the cleaning of stables had a significantly lower abundance of faecal ermB and tetW compared with other farms. CONCLUSION: A positive association was found between the use of trimethoprim/sulfonamides and the abundance of sul2 in faeces in veal calves. Additionally, other relevant risk factors associated with ARGs in veal calves were identified, such as weight on arrival at the farm and cleaning practices.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Sulfonamidas/farmacología , Trimetoprim/farmacología , Animales , Antibacterianos/administración & dosificación , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Combinación de Medicamentos , Heces/microbiología , Francia , Alemania , Kanamicina Quinasa/genética , Metiltransferasas/genética , Países Bajos , Uso Excesivo de Medicamentos Recetados , Reacción en Cadena en Tiempo Real de la Polimerasa , Encuestas y Cuestionarios
13.
Methods Mol Biol ; 1918: 117-128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30580403

RESUMEN

Foodborne pathogens are responsible of foodborne diseases and food poisoning and thus pose a great threat to food safety. These microorganisms can adhere to surface and form a biofilm composed of an extracellular matrix. This extracellular matrix protects bacterial cells from industrial environmental stress factors such as cleaning and disinfection operations. Moreover, during these environmental stresses, many bacterial species can enter a viable but nonculturable (VBNC) state. VBNC cells are characterized by a loss of cultivability on conventional bacteriological agar. This leads to an underestimation of total viable cells in environmental samples, and thus poses a risk for public health. In this chapter, we present a method to detect viable population of foodborne pathogens in industrial environmental samples using a molecular method with a combination of propidium monoazide (PMA) and quantitative PCR (qPCR) and a fluorescence microscopic method associated with the LIVE/DEAD BacLight™ viability stain.


Asunto(s)
Bacterias/genética , Microbiología de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Datos , Microbiología Ambiental , Microscopía/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
14.
Sci Rep ; 9(1): 12947, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506516

RESUMEN

To guarantee food safety, a better deciphering of ecology and adaptation strategies of bacterial pathogens such as Salmonella in food environments is crucial. The role of food processing conditions such as cleaning and disinfection procedures on antimicrobial resistance emergence should especially be investigated. In this work, the prevalence and antimicrobial resistance of Salmonella and the microbial ecology of associated surfaces communities were investigated in a pig slaughterhouse before and after cleaning and disinfection procedures. Salmonella were detected in 67% of samples and isolates characterization revealed the presence of 15 PFGE-patterns belonging to five serotypes: S.4,5,12:i:-, Rissen, Typhimurium, Infantis and Derby. Resistance to ampicillin, sulfamethoxazole, tetracycline and/or chloramphenicol was detected depending on serotypes. 16S rRNA-based bacterial diversity analyses showed that Salmonella surface associated communities were highly dominated by the Moraxellaceae family with a clear site-specific composition suggesting a persistent colonization of the pig slaughterhouse. Cleaning and disinfection procedures did not lead to a modification of Salmonella susceptibility to antimicrobials in this short-term study but they tended to significantly reduce bacterial diversity and favored some genera such as Rothia and Psychrobacter. Such data participate to the construction of a comprehensive view of Salmonella ecology and antimicrobial resistance emergence in food environments in relation with cleaning and disinfection procedures.


Asunto(s)
Antibacterianos/farmacología , Desinfección/métodos , Farmacorresistencia Bacteriana , Salmonelosis Animal/tratamiento farmacológico , Salmonella/efectos de los fármacos , Enfermedades de los Porcinos/prevención & control , Mataderos , Animales , Pruebas de Sensibilidad Microbiana , Salmonelosis Animal/epidemiología , Salmonelosis Animal/microbiología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-30513250

RESUMEN

The Infiniplex for milk® (IPM) kit is a quick method for the simultaneous and qualitative detection of more than 100 molecules including antibiotic residues, mycotoxins, anti-inflammatories and antiparasitic drugs into a single test that does not require milk treatment. The IPM® kit was validated according to the European decision EC/2002/657 and according to the European guideline for the validation of screening methods (2010). Our validation was focused only on antibiotic residues. The washing step was identified as the most critical step of the assay. Insufficient washes could cause a significant background noise that prevents imaging. Positive controls have to be freshly prepared each day (insufficient stability). The method was specific with a low false-positive rate of 1.7% on 5 discrete test regions (DTR) ((beta-lactams, lincomycin, virginiamycin, quinolones and sulphonamides)) and a false-positive rate of 0% on the 26 other DTR. During our validation, the 42 determined detection capabilities CCß for 12 antibiotic families (aminoglycosides, cephalosporins, lincosamides, macrolides, miscellaneous antibiotics, penicillins, phenolated polymixins, polypeptide antibiotics, quinolones, sulphonamides, tetracyclines) were at between once and twice the decision levels stated by the manufacturer. Forty CCß determined were lower than the respective regulatory limits (i.e. MRL, RC, MRPL) in milk, except for tilmicosin (1.5 times the MRL) and neospiramycin (>1.25 times the MRL). The estimated CCß of thiamphenicol, cloxacillin, danofloxacin, sulphathiazol, ceftiofur and sulphamonomethoxine were lower than or at the MRL. However, it was difficult to approach an accurate CCß with only qualitative results. It is impossible to know whether or not we were close to the cut-off value. The software could be improved by differentiating between low-positive and high-positive results. The results of our participation in three qualitative proficiency tests in 2016 and 2017 for the detection of quinolones, tetracyclines and sulphonamides in cows' milk were very satisfactory.


Asunto(s)
Antibacterianos/análisis , Residuos de Medicamentos/análisis , Inmunoensayo , Leche/química , Animales , Europa (Continente) , Reacciones Falso Positivas
16.
Artículo en Inglés | MEDLINE | ID: mdl-28585900

RESUMEN

Efficient screening methods are needed to control antibiotic residues in eggs. A microbiological kit (Explorer® 2.0 test (Zeu Inmunotech, Spain)) and an immunobiosensor kit (Microarray II (AM® II) on Evidence Investigator™ system (Randox, UK)) have been evaluated and validated for screening of antibiotic residues in eggs, according to the European decision EC/2002/657 and to the European guideline for the validation of screening methods. The e-reader™ system, a new automatic incubator/reading system, was coupled to the Explorer 2.0 test. The AM II kit can detect residues of six different families of antibiotics in different matrices including eggs. For both tests, a different liquid/liquid extraction of eggs had to be developed. Specificities of the Explorer 2.0 and AM II kit were equal to 8% and 0% respectively. The detection capabilities were determined for 19 antibiotics, with representatives from different families, for Explorer 2.0 and 12 antibiotics for the AM II kit. For the nine antibiotics having a maximum residue limit (MRL) in eggs, the detection capabilities CCß of Explorer 2.0 were below the MRL for four antibiotics, equal to the MRL for two antibiotics and between 1 and 1.5 MRLs for the three remaining antibiotics (tetracyclines). For the antibiotics from other families, the detection capabilities were low for beta-lactams and sulfonamides and satisfactory for dihydrostreptomycin (DHS) and fluoroquinolones, which are usually difficult to detect with microbiological tests. The CCß values of the AM II kit were much lower than the respective MRLs for three detected antibiotics (tetracycline, oxytetracycline, tylosin). Concerning the nine other antibiotics, the detection capabilities determined were low. The highest CCß was obtained for streptomycin (100 µg kg-1).


Asunto(s)
Antibacterianos/análisis , Residuos de Medicamentos/análisis , Huevos/análisis , Contaminación de Alimentos/análisis , España
17.
Artículo en Inglés | MEDLINE | ID: mdl-26612266

RESUMEN

The Evidence Investigator™ system (Randox, UK) is a biochip and semi-automated system. The microarray kit II (AM II) is capable of detecting several compounds belonging to different families of antibiotics: quinolones, ceftiofur, thiamphenicol, streptomycin, tylosin and tetracyclines. The performance of this innovative system was evaluated for the detection of antibiotic residues in new matrices, in muscle of different animal species and in aquaculture products. The method was validated according to the European Decision No. EC/2002/657 and the European guideline for the validation of screening methods, which represents a complete initial validation. The false-positive rate was equal to 0% in muscle and in aquaculture products. The detection capabilities CCß for 12 validated antibiotics (enrofloxacin, difloxacin, ceftiofur, desfuroyl ceftiofur cysteine disulfide, thiamphenicol, florfenicol, tylosin, tilmicosin, streptomycin, dihydrostreptomycin, tetracycline, doxycycline) were all lower than the respective maximum residue limits (MRLs) in muscle from different animal origins (bovine, ovine, porcine, poultry). No cross-reactions were observed with other antibiotics, neither with the six detected families nor with other families of antibiotics. The AM II kit could be applied to aquaculture products but with higher detection capabilities from those in muscle. The detection capabilities CCß in aquaculture products were respectively at 0.25, 0.10 and 0.5 of the respective MRL in aquaculture products for enrofloxacin, tylosin and oxytetracycline. The performance of the AM II kit has been compared with other screening methods and with the performance characteristics previously determined in honey.


Asunto(s)
Antibacterianos/análisis , Antibacterianos/clasificación , Acuicultura , Residuos de Medicamentos/análisis , Contaminación de Alimentos/análisis , Análisis por Micromatrices , Músculos/química , Alimentos Marinos/análisis , Animales , Automatización , Bovinos , Miel/análisis , Salmón , Ovinos , Porcinos
18.
J Food Prot ; 68(2): 347-52, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15726980

RESUMEN

The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5.


Asunto(s)
Antibacterianos/farmacología , Seguridad de Productos para el Consumidor , Corynebacterium/efectos de los fármacos , Manipulación de Alimentos/métodos , Micrococcaceae/efectos de los fármacos , Leche/microbiología , Animales , Secuencia de Bases , Corynebacterium/genética , Farmacorresistencia Bacteriana Múltiple , Genes Bacterianos , Humanos , Lincosamidas , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Micrococcaceae/genética , Estreptograminas/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-25186037

RESUMEN

The main chemicals used against varoa are acaricides, and the antibiotics used for the control of bee bacterial diseases are mainly tetracyclines, streptomycins, sulfonamides and chloramphenicol. No maximum residue limits (MRLs) have been set for any antibiotics in honey. Therefore, in the European Union, minimum recommended concentrations (RC) for the analytical performance of methods to control a certain set of these non-authorised chemicals in honey were published by the European Union Reference Laboratory (EU-RL) in 2007. Concerning the strategy for the control for antibiotic residues in honey, there is still a great need for a cheap and single multi-residue method. Biochip array technology is an innovative assay technology for the multi-analyte screening of biological samples in a rapid and easy-to-use format. A multi-array system, called Evidence Investigator™ (Randox, Crumlin, Co., Antrim, UK), was evaluated in our laboratory. It is a semi-automated biochip system designed for research, clinical applications and veterinary use. A competitive chemiluminescent immunoassay is employed for the detection of antimicrobials. The MicroArray II kit (AM II) dedicated to the screening of six different families of antibiotic residues was validated according to the European guideline for the validation of screening methods for residues of veterinary medicines. The specificity was proven to be very satisfactory, and applicability to different kinds of honey was demonstrated. The detection capabilities (CCß) of six antibiotic residues were determined and were below the RCs when exist. The AM II kit could detect at least six quinolones, four tetracyclines and three epimers, three aminoglycosides, three macrolides, thiamphenicol, florfenicol and ceftiofur along with one of its stabilised metabolites, the desfuroylceftiofurcysteine disulfide (DCCD).


Asunto(s)
Antibacterianos/análisis , Residuos de Medicamentos/análisis , Contaminación de Alimentos , Inspección de Alimentos/métodos , Miel/análisis , Drogas Veterinarias/análisis , Anticuerpos Inmovilizados/metabolismo , Especificidad de Anticuerpos , Automatización de Laboratorios , Reacciones Cruzadas , Unión Europea , Reacciones Falso Positivas , Inspección de Alimentos/normas , Adhesión a Directriz , Guías como Asunto , Límite de Detección , Análisis por Matrices de Proteínas , Control de Calidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA