Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
2.
Subcell Biochem ; 87: 167-227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29464561

RESUMEN

Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Humanos
3.
Nat Commun ; 14(1): 3683, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344476

RESUMEN

Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation.


Asunto(s)
AMP Cíclico , Protones , Proteínas Bacterianas/metabolismo , Sistemas de Mensajero Secundario/fisiología , Proteínas de Transporte de Membrana/metabolismo , Potasio/metabolismo , Fosfatos de Dinucleósidos/metabolismo
4.
Nat Commun ; 11(1): 626, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005818

RESUMEN

Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Potasio/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Dimerización , Transporte Iónico , Modelos Moleculares , Familia de Multigenes , Dominios Proteicos
5.
Sci Rep ; 10(1): 3137, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081879

RESUMEN

Low doses of ionizing radiation (LDIR) activate endothelial cells inducing angiogenesis. In zebrafish, LDIR induce vessel formation in the sub-intestinal vessels during post-embryonic development and enhance the inter-ray vessel density in adult fin regeneration. Since angiogenesis is a crucial process involved in both post-embryonic development and regeneration, herein we aimed to understand whether LDIR accelerate these physiological conditions. Our data show that LDIR upregulate the gene expression of several pro-angiogenic molecules, such as flt1, kdr, angpt2a, tgfb2, fgf2 and cyr61in sorted endothelial cells from zebrafish larvae and this effect was abrogated by using a vascular endothelial growth factor receptor (VEGFR)-2 tyrosine kinase inhibitor. Irradiated zebrafish present normal indicators of developmental progress but, importantly LDIR accelerate post-embryonic development in a VEGFR-2 dependent signaling. Furthermore, our data show that LDIR do not accelerate regeneration after caudal fin amputation and the gene expression of the early stages markers of regeneration are not modulated by LDIR. Even though regeneration is considered as a recapitulation of embryonic development and LDIR induce angiogenesis in both conditions, our findings show that LDIR accelerate post-embryonic development but not regeneration. This highlights the importance of the physiological context for a specific phenotype promoted by LDIR.


Asunto(s)
Aletas de Animales/fisiología , Aletas de Animales/efectos de la radiación , Células Endoteliales/fisiología , Neovascularización Fisiológica/efectos de la radiación , Radiación Ionizante , Regeneración/efectos de la radiación , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Separación Celular , Células Endoteliales/efectos de la radiación , Inhibidores Enzimáticos , Citometría de Flujo , Larva/fisiología , Larva/efectos de la radiación , Morfogénesis , Transducción de Señal , Factores de Transcripción , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteínas de Pez Cebra/antagonistas & inhibidores
6.
Nat Commun ; 9(1): 1728, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712914

RESUMEN

Electron transfer in respiratory chains generates the electrochemical potential that serves as energy source for the cell. Prokaryotes can use a wide range of electron donors and acceptors and may have alternative complexes performing the same catalytic reactions as the mitochondrial complexes. This is the case for the alternative complex III (ACIII), a quinol:cytochrome c/HiPIP oxidoreductase. In order to understand the catalytic mechanism of this respiratory enzyme, we determined the structure of ACIII from Rhodothermus marinus at 3.9 Å resolution by single-particle cryo-electron microscopy. ACIII presents a so-far unique structure, for which we establish the arrangement of the cofactors (four iron-sulfur clusters and six c-type hemes) and propose the location of the quinol-binding site and the presence of two putative proton pathways in the membrane. Altogether, this structure provides insights into a mechanism for energy transduction and introduces ACIII as a redox-driven proton pump.


Asunto(s)
Proteínas Bacterianas/química , Complejo III de Transporte de Electrones/química , Hemo/química , Hidroquinonas/química , Subunidades de Proteína/química , Protones , Rhodothermus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Expresión Génica , Hemo/metabolismo , Hidroquinonas/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Rhodothermus/genética , Termodinámica
7.
Elife ; 52016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830641

RESUMEN

Respirasomes are macromolecular assemblies of the respiratory chain complexes I, III and IV in the inner mitochondrial membrane. We determined the structure of supercomplex I1III2IV1 from bovine heart mitochondria by cryo-EM at 9 Å resolution. Most protein-protein contacts between complex I, III and IV in the membrane are mediated by supernumerary subunits. Of the two Rieske iron-sulfur cluster domains in the complex III dimer, one is resolved, indicating that this domain is immobile and unable to transfer electrons. The central position of the active complex III monomer between complex I and IV in the respirasome is optimal for accepting reduced quinone from complex I over a short diffusion distance of 11 nm, and delivering reduced cytochrome c to complex IV. The functional asymmetry of complex III provides strong evidence for directed electron flow from complex I to complex IV through the active complex III monomer in the mammalian supercomplex.


Asunto(s)
Transporte de Electrón , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Animales , Bovinos , Microscopía por Crioelectrón , Miocardio/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA