Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125619

RESUMEN

Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inhibidores de Fosfodiesterasa 4 , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 4/química , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928466

RESUMEN

Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. Hence, ensuring access to novel and improved chemotherapeutic agents is imperative for patients grappling with this severe ailment. Pyrazole and its fused systems derived thereof are heteroaromatic moieties widely employed in medicinal chemistry to develop effective drugs for various therapeutic areas, including inflammation, pain, oxidation, pathogens, depression, and fever. In a previous study, we described the biochemical properties of a newly synthesized group of imidazo-pyrazole compounds. In this paper, to improve our knowledge of the pharmacological properties of these molecules, we conduct a differential proteomic analysis on a human melanoma cell line treated with one of these imidazo-pyrazole derivatives. Our results detail the changes to the SKMEL-28 cell line proteome induced by 24, 48, and 72 h of 3e imidazo-pyrazole treatment. Notably, we highlight the down-regulation of the Ras-responsive element binding protein 1 (RREB1), a member of the zinc finger transcription factors family involved in the tumorigenesis of melanoma. RREB1 is a downstream element of the MAPK pathway, and its activation is mediated by ERK1/2 through phosphorylation.


Asunto(s)
Melanoma , Proteómica , Pirazoles , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Pirazoles/farmacología , Pirazoles/química , Proteómica/métodos , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Proteínas de Unión al ADN/metabolismo , Imidazoles/farmacología , Imidazoles/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteoma/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731825

RESUMEN

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Asunto(s)
Amidas , Antineoplásicos , Antioxidantes , Proliferación Celular , Hidrazonas , Pirazoles , Humanos , Pirazoles/química , Pirazoles/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Amidas/química , Amidas/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Células MCF-7 , Células HeLa
4.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792163

RESUMEN

To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs 1-4 have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in meta and para positions of catechol portion (5APs 1); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs 2); (iii) a more flexible alkyl chain was inserted on N1 position (5APs 3); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs 4). All new derivatives 1-4 have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties. In addition, in silico pharmacokinetics, drug-likeness properties, and toxicity have been calculated. 5APs 1 emerged to be promising anti-proliferative agents, able to suppress the growth of specific cancer cell lines. Furthermore, derivatives 3 remarkably inhibited ROS production in platelets and 5APs 4 showed interesting in vitro radical scavenging properties. Overall, the collected results further confirm the pharmaceutical potentials of this class of compounds and support future studies for the development of novel anti-proliferative and antioxidant agents.


Asunto(s)
Antineoplásicos , Antioxidantes , Pirazoles , Humanos , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antioxidantes/farmacología , Antioxidantes/química , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estructura Molecular
5.
Mol Divers ; 27(3): 1285-1295, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35867289

RESUMEN

Imidazolidine-2-thione substructure represents a pharmaceutically attractive scaffold, being included in different antimicrobial, anticancer and pesticide agents. To further evaluate the pharmaceutical potential of this chemical moiety, imidazolidine-2-thione was reacted with atypical Vilsmeier adducts, obtained by the condensation between dimethylacetamide and various acyl chlorides endowed with different electronic and steric properties. The formation of mono-acylated or di-acylated thiourea derivatives emerged to be affected by the nature of the considered acyl chloride reagent. Computational semi-empirical simulations were carried out to rationalize the relevant factor influencing the outcome of the reaction. As acylthioureas are pharmacologically relevant compounds, the chemical versatility of mono-acylated derivatives were evaluated by reacting benzoyl imidazolidin-2-thione with acyl chlorides. A small library of asymmetric di-acylthioureas was prepared and the obtained derivatives did not show any cytotoxicity on SKOV-3 and MCF-7 cancer cell lines. Additionally, in silico studies predicted good pharmacokinetics properties and promising drug-like characteristics for mono- and di-acylated thioureas. These considerations further support the value of the prepared compounds as interesting non-cytotoxic chemical scaffold useful in the medicinal chemistry field.


Asunto(s)
Etilenotiourea , Humanos , Cloruros , Tiourea/farmacología , Células MCF-7
6.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175540

RESUMEN

A pyrazole nucleus is an easy-to-prepare scaffold with large therapeutic potential. Consequently, the search for new pyrazole-based compounds is of great interest to the academic community as well as industry. In the last ten years, a large number of papers and reviews on the design, synthesis, and biological evaluation of different classes of pyrazoles and many pyrazole-containing compounds have been published. However, an overview of pyrazole derivatives bearing a free amino group at the 3, 4, or 5 position (namely, 3-aminopyrazoles, 4-aminopyrazoles, and 5-aminopyrazoles, respectively) and their biological properties is still missing, despite the fact that aminopyrazoles are advantageous frameworks able to provide useful ligands for receptors or enzymes, such as p38MAPK, and different kinases, COX and others, as well as targets important for bacterial and virus infections. With the aim to fill this gap, the present review focuses on aminopyrazole-based compounds studied as active agents in different therapeutic areas, with particular attention on the design and structure-activity relationships defined by each class of compounds. In particular, the most relevant results have been obtained for anticancer/anti-inflammatory compounds, as the recent approval of Pirtobrutinib demonstrates. The data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "aminopyrazole" as the keyword.


Asunto(s)
Antiinflamatorios , Química Farmacéutica , Química Farmacéutica/métodos , Relación Estructura-Actividad
7.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298148

RESUMEN

The impact of innovative technologies on the target discovery has been employed here to characterize the interactome of STIRUR 41, a promising 3-fluoro-phenyl-5-pyrazolyl-urea derivative endowed with anti-cancer activity, on neuroblastoma-related cells. A drug affinity responsive target stability-based proteomic platform has been optimized to elucidate the molecular mechanism at the basis of STIRUR 41 action, together with immunoblotting analysis and in silico molecular docking. Ubiquitin Specific Protease 7 (USP-7), one of the deubiquitinating enzymes which protect substrate proteins from proteasomal degradation, has been identified as the most affine STIRUR 41 target. As further demonstrated by in vitro and in-cell assays, STIRUR 41 was able to inhibit both the enzymatic activity of USP-7 and its expression levels in neuroblastoma-related cells, thus laying an encouraging base for the blockade of USP-7 downstream signaling.


Asunto(s)
Neuroblastoma , Urea , Humanos , Simulación del Acoplamiento Molecular , Proteómica , Immunoblotting
8.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838701

RESUMEN

Pyrazole core represents a privilege scaffold in medicinal chemistry; a number of pyrazole compounds are endowed with various pharmacological activities in different therapeutic areas including antimalarial treatment. Supported by this evidence, a series of 5-anilino-3-(hetero)arylpyrazoles were evaluated for their antiplasmodial activity in in vitro assays. The compounds were synthesized according to regioselective and versatile protocols that combine active methylene reagents, aryl isothiocyanates and (substituted)hydrazines. The considered derivatives 2 allowed the definition of consistent structure-activity relationships and compounds 2b,e,k,l were identified as the most interesting derivatives of the series showing micromolar IC50 values against chloroquine-sensitive and chloroquine-resistant Plasmodium strains. Additionally, the most active anilino-pyrazoles did not show any cytotoxicity against tumor and normal cells and were predicted to have favorable drug-like and pharmacokinetic properties.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Cloroquina/farmacología , Relación Estructura-Actividad , Indicadores y Reactivos , Plasmodium falciparum
9.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742823

RESUMEN

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144549

RESUMEN

A small library of highly functionalized phenylaminopyrazoles, bearing different substituents at position 1, 3, and 4 of the pyrazole ring, was prepared by the one-pot condensation of active methylene reagents, phenylisothiocyanate, and substituted hydrazine (namely, methyl- and benzyl-hydrazine). The identified reaction conditions proved to be versatile and efficient. Furthermore, the evaluation of alternative stepwise protocols affected the chemo- and regio-selectivity outcome of the one-pot procedure. The chemical identities of two N-methyl pyrazole isomers, selected as prototypes of the whole series, were unambiguously identified by means of NMR and mass spectrometry studies. Additionally, semiempirical calculations provided a structural rationale for the different chromatographic behavior of the two isomers. The prepared tetra-substituted phenylaminopyrazoles were tested in cell-based assays on a panel of cancer and normal cell lines. The tested compounds did not show any cytotoxic effect on the selected cell lines, thus supporting their pharmaceutical potentials.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Antineoplásicos/química , Hidrazinas , Estructura Molecular , Preparaciones Farmacéuticas , Pirazoles/química , Relación Estructura-Actividad
11.
Bioorg Chem ; 115: 105168, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284173

RESUMEN

In recent years, 5-pyrazolyl-ureas have mostly been known for their attractive poly-pharmacological outline and, in particular, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl) ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a capable anti-angiogenic compound. This paper examines its interactome by functional proteomics using a label-free mass spectrometry based platform, coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. Calreticulin has been recognized as the GeGe-3 principal target and this evidence has been supported by immunoblotting and in silico molecular docking. Furthermore, cell studies have shown that GeGe-3 lowers cell calcium mobilization, cytoskeleton organization and focal adhesion kinase expression, thus linking its biological potential to calreticulin binding and, ultimately, shedding light on the reasonable action mechanism of this molecule as an anti-angiogenic factor.


Asunto(s)
Inhibidores de la Angiogénesis/química , Proteoma/metabolismo , Proteómica/métodos , Pirazoles/química , Urea/química , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Sitios de Unión , Calcio/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ionomicina/farmacología , Simulación del Acoplamiento Molecular , Proteoma/efectos de los fármacos
12.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207175

RESUMEN

Nanotechnology is an important application in modern cancer therapy. In comparison with conventional drug formulations, nanoparticles ensure better penetration into the tumor mass by exploiting the enhanced permeability and retention effect, longer blood circulation times by a reduced renal excretion and a decrease in side effects and drug accumulation in healthy tissues. The most significant classes of nanoparticles (i.e., liposomes, inorganic and organic nanoparticles) are here discussed with a particular focus on their use as delivery systems for small molecule tyrosine kinase inhibitors (TKIs). A number of these new compounds (e.g., Imatinib, Dasatinib, Ponatinib) have been approved as first-line therapy in different cancer types but their clinical use is limited by poor solubility and oral bioavailability. Consequently, new nanoparticle systems are necessary to ameliorate formulations and reduce toxicity. In this review, some of the most important TKIs are reported, focusing on ongoing clinical studies, and the recent drug delivery systems for these molecules are investigated.


Asunto(s)
Antineoplásicos/farmacología , Nanotecnología , Inhibidores de Proteínas Quinasas/farmacología , Nanomedicina Teranóstica , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Composición de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Relación Estructura-Actividad , Resultado del Tratamiento
13.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299259

RESUMEN

In the past few years, Bruton's tyrosine Kinase (Btk) has emerged as new target in medicinal chemistry. Since approval of ibrutinib in 2013 for treatment of different hematological cancers (as leukemias and lymphomas), two other irreversible Btk inhibitors have been launched on the market. In the attempt to overcome irreversible Btk inhibitor limitations, reversible compounds have been developed and are currently under evaluation. In recent years, many Btk inhibitors have been patented and reported in the literature. In this review, we summarized the (ir)reversible Btk inhibitors recently developed and studied clinical trials and preclinical investigations for malignancies, chronic inflammation conditions and SARS-CoV-2 infection, covering advances in the field of medicinal chemistry. Furthermore, the nanoformulations studied to increase ibrutinib bioavailability are reported.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/administración & dosificación , Adenina/administración & dosificación , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/metabolismo , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Piperidinas/administración & dosificación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885993

RESUMEN

Bruton's tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "BTK" and "BTK inhibitors" as keywords.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/clasificación , Animales , Linfocitos B/metabolismo , Humanos , Concentración 50 Inhibidora , Resultado del Tratamiento
15.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494519

RESUMEN

Pyrimido-pyrimidine derivatives have been developed as rigid merbarone analogues. In a previous study, these compounds showed potent antiproliferative activity and efficiently inhibited topoisomerase IIα. To further extend the structure-activity relationships on pyrimido-pyrimidines, a novel series of analogues was synthesized by a two-step procedure. Analogues 3-6 bear small alky groups at positions 1 and 3 of the pyrimido-pyrimidine scaffold whereas at position 6a (4-chloro)phenyl substituent was inserted. The basic side chains introduced at position 7 were selected on the basis of the previously developed structure-activity relationships. The antiproliferative activity of the novel compounds proved to be affected by both the nature of the basic side chain and the substituents on the pyrimido-pyrimidine moiety. Derivatives 5d and 5e were identified as the most promising molecules still showing reduced antiproliferative activity in comparison with the previously prepared pyrimido-pyrimidine analogues. In topoisomerase IIα-5d docking complex, the ligand would poorly interact with the enzyme and assume a different orientation in comparison with 1d bioactive conformation.


Asunto(s)
Antineoplásicos , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias , Neoplasias , Proteínas de Unión a Poli-ADP-Ribosa , Tiobarbitúricos , Inhibidores de Topoisomerasa II , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Tiobarbitúricos/síntesis química , Tiobarbitúricos/química , Tiobarbitúricos/farmacología , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
16.
Mol Divers ; 19(4): 669-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26077842

RESUMEN

An unprecedented, highly convergent, high-yielding, one-pot synthesis of (acyl)hydrazones and thiosemicarbazones was carried out by the in situ condensation of isolable iminium chlorides of imidazolidin-2-(thio)one, tetrahydropyrimidin-2-thione and indole derivatives with nitrogen nucleophiles in the presence of a base. The developed reaction procedure is largely advantageous. It is highly parallelizable, no intermediates need to be isolated and minimal sample handling is required during the purification steps. Some relevant reaction parameters including reaction temperature and p[Formula: see text] of the base are discussed. NMR analysis was carried out to assess the stereochemistry of the obtained compounds. The stereochemical outcome of the reaction was found to be affected by the nature of the nitrogen-containing nucleophile being the majority of the derivatives isolated as single geometric isomers. The cytotoxicity and antiviral activities of the prepared compounds have been preliminary assessed. In cell-based screenings some of the derivatives proved to be cytotoxic at low micromolar concentrations and interesting anti-Reo-1 properties have been detected.


Asunto(s)
Hidrazonas/síntesis química , Tiosemicarbazonas/síntesis química , Antivirales/síntesis química , Antivirales/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citotoxinas/síntesis química , Citotoxinas/farmacología , Hidrazonas/farmacología , Estructura Molecular , Nitrógeno/química , Sales (Química) , Tiosemicarbazonas/farmacología
17.
Eur J Med Chem ; 276: 116715, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39083983

RESUMEN

In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.


Asunto(s)
Inhibidores de la Angiogénesis , Calcio , Células Endoteliales de la Vena Umbilical Humana , Simulación del Acoplamiento Molecular , Pirazoles , Humanos , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Calcio/metabolismo , Relación Estructura-Actividad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Estructura Molecular , Calreticulina/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neovascularización Patológica/tratamiento farmacológico , Angiogénesis
18.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543162

RESUMEN

To meet the urgent need for new antibacterial molecules, a small library of pyrazolyl thioureas (PTUs) was designed, synthesized and tested against difficult-to-treat human pathogens. The prepared derivatives are characterized by a carboxyethyl functionality on C4 and different hydroxyalkyl chains on N1. Compounds 1a-o were first evaluated against a large panel of Gram-positive and Gram-negative pathogens. In particular, the majority of PTUs proved to be active against different species of the Staphylococcus genus, with MIC values ranging from 32 to 128 µg/mL on methicillin-resistant Staphylococcus strains, often responsible for severe pulmonary disease in cystic fibrosis patients. Time-killing experiments were also performed for the most active compounds, evidencing a bacteriostatic mechanism of action. For most active derivatives, cytotoxicity was evaluated in Vero cells, and at the tested concentrations and at the experimental exposure time of 24 h, none of the compounds analysed showed significant toxicity. In addition, favourable drug-like, pharmacokinetic and toxicity properties were predicted for all new synthesized derivatives. Overall, the collected data confirmed the PTU scaffold as a promising chemotype for the development of novel antibacterial agents active against Gram-positive multi-resistant strains frequently isolated from cystic fibrosis patients.

19.
ChemMedChem ; 19(4): e202300391, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38105411

RESUMEN

Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the search of novel series of CFTR modulators, a library of mono and diacyl thioureas were prepared by sequential synthesis. When tested alone, the obtained compounds 5 and 6 poorly affected F508del-CFTR conductance but, in combination with Lumacaftor, selected derivatives showed the ability to increase the activity of the approved modulator. Analogue 6 i displayed the most marked enhancing effect and acylthioureas 6 d and 6 f were also able to improve efficacy of Lumacaftor. All compounds proved to be non-cytotoxic against different cancer cell lines. Good pharmacokinetic properties were predicted for derivatives 5 and 6, thus supporting the value of these compounds for the development of novel modulators potentially useful for cystic fibrosis.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Mutación
20.
Bioorg Med Chem ; 21(21): 6328-36, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24063907

RESUMEN

Pyrimidopyrimidine derivatives 1 were prepared as rigid thioanalogues of merbarone (a catalytic topoisomerase II inhibitor) and screened as antiproliferative agents against different tumor cell lines. A number of the synthesized compounds emerged as cytotoxic in cell-based assays (MT-4, HeLa and MCF-7 cells) at low micromolar concentrations. In a National Cancer Institute screening, selected member of the series showed a broad spectrum of antiproliferative activity against various tumours (melanoma, renal, CNS, colon and breast cancers). The acid-base and steric properties of the substituent at position 7 of the pyrimidopyrimidine scaffold deeply affected potency. Enzymatic assays evidenced that a subset of tested derivatives efficiently inhibit topoisomerase IIα accordingly to merbarone mechanism of action. However this property does not fully rationalize the cytotoxicity data of the full ligand panel, suggesting that different target(s) should be additionally involved.


Asunto(s)
Antineoplásicos/química , Compuestos Bicíclicos con Puentes/química , Tiobarbitúricos/química , Inhibidores de Topoisomerasa II/química , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Células MCF-7 , Pirimidinas/síntesis química , Pirimidinas/toxicidad , Relación Estructura-Actividad , Tiobarbitúricos/síntesis química , Tiobarbitúricos/toxicidad , Tionas/síntesis química , Tionas/toxicidad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA