Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 372, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438864

RESUMEN

BACKGROUND: Correct timing of flowering is critical for plants to produce enough viable offspring. In Arabidopsis thaliana (Arabidopsis), flowering time is regulated by an intricate network of molecular signaling pathways. Arabidopsis srr1-1 mutants lacking SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) expression flower early, particularly under short day (SD) conditions (1). SRR1 ensures that plants do not flower prematurely in such non-inductive conditions by controlling repression of the key florigen FT. Here, we have examined the role of SRR1 in the closely related crop species Brassica napus. RESULTS: Arabidopsis SRR1 has five homologs in Brassica napus. They can be divided into two groups, where the A02 and C02 copies show high similarity to AtSRR1 on the protein level. The other group, including the A03, A10 and C09 copies all carry a larger deletion in the amino acid sequence. Three of the homologs are expressed at detectable levels: A02, C02 and C09. Notably, the gene copies show a differential expression pattern between spring and winter type accessions of B. napus. When the three expressed gene copies were introduced into the srr1-1 background, only A02 and C02 were able to complement the srr1-1 early flowering phenotype, while C09 could not. Transcriptional analysis of known SRR1 targets in Bna.SRR1-transformed lines showed that CYCLING DOF FACTOR 1 (CDF1) expression is key for flowering time control via SRR1. CONCLUSIONS: We observed subfunctionalization of the B. napus SRR1 gene copies, with differential expression between early and late flowering accessions of some Bna.SRR1 copies. This suggests involvement of Bna.SRR1 in regulation of seasonal flowering in B. napus. The C09 gene copy was unable to complement srr1-1 plants, but is highly expressed in B. napus, suggesting specialization of a particular function. Furthermore, the C09 protein carries a deletion which may pinpoint a key region of the SRR1 protein potentially important for its molecular function. This is important evidence of functional domain annotation in the highly conserved but unique SRR1 amino acid sequence.


Asunto(s)
Brassica napus/genética , Flores/genética , Genes de Plantas , Proteínas de Plantas/genética , Flores/crecimiento & desarrollo , Dosificación de Gen , Expresión Génica , Filogenia , Proteínas de Plantas/fisiología
2.
Chemistry ; 24(58): 15543-15549, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30028044

RESUMEN

A simple imine clip-and-cleave concept has been developed for the selective hydroxylation of non-activated CH bonds in aliphatic aldehydes with dioxygen through a copper complex. The synthetic protocol involves reaction of a substrate aldehyde with N,N-diethyl-ethylendiamine to give the corresponding imine, which is used as a bidentate donor ligand forming a copper(I) complex with [Cu(CH3 CN)4 ][CF3 SO3 ]. After exposure of the reaction mixture to dioxygen acidic cleavage and aqueous workup liberates the corresponding ß-hydroxylated aldehyde. The concept for the hydroxylation of trimethylacetaldehyde as well as adamantane and diamantane 1-carbaldehydes was investigated and the corresponding ß-hydroxy aldehydes were obtained with high selectivities. The results of low temperature stopped-flow measurements indicate the formation of a bis(µ-oxido)dicopper complex as reactive intermediate. According to density functional theory (DFT, RI-BLYP-D3/def2-TZVP(SDD)/ COSMO(CH2 Cl2 )//RI-PBE-D3/def2-TZVP(SDD)) computations CH bonds suitably predisposed to the [Cu2 O2 ]2+ core undergo hydroxylation in a concerted step with particularly low activation barriers, which explains the experimentally observed regioselectivities.

3.
Dalton Trans ; 49(27): 9480-9486, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32608457

RESUMEN

Low temperature stopped-flow techniques were used to investigate the reaction of three different iron(ii) complexes with nitrogen monoxide. The kinetic studies allowed calculation of the activation parameters from the corresponding Eyring plots for all three systems. The reaction of iron(ii) chloride with NO leading to the formation of MNIC (mononitrosyl-iron-complex) and DNIC (dinitrosyl-iron-complex) led to activation parameters of ΔH‡ = 55.4 ± 0.4 kJ mol-1 and ΔS‡ = 13 ± 2 J K-1 mol-1 for MNIC and ΔH‡ = 32 ± 6 kJ mol-1 and ΔS‡ = -193 ± 21 J K-1 mol-1 for DNIC. Formation of MNIC turned out to be much faster in comparison with DNIC. In contrast, activation parameters for the formation of monoculear [Fe(bztpen)(NO)](OTf)2 (bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)-ethylenediamine) ΔH‡ = 17.8 ± 0.8 kJ mol-1 and ΔS‡ = -181 ± 3 J K-1 mol-1 supported an associative mechanism. Interestingly, [Fe(bztpen)(CH3CN)](OTf)2 does not react with dioxygen at all. Furthermore, activation parameters of ΔH‡ = 37.7 ± 0.7 kJ mol-1 and ΔS‡ = -66 ± 3 J K-1 mol-1 were obtained for the reaction of NO with the dinuclear iron(ii) H-HPTB complex (H-HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane), [Fe2(H-HPTB)(Cl)3]. The kinetic data allowed postulation of the mechanisms for all of these reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA