Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 148: 109490, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471626

RESUMEN

Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.


Asunto(s)
Neutrófilos , Pez Cebra , Animales , Macrófagos , Inmunidad Innata , Animales Modificados Genéticamente , Larva , Mamíferos
2.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078586

RESUMEN

Innate immune responses to inflammation and infection are complex and represent major challenges for developing much needed new treatments for chronic inflammatory diseases and drug-resistant infections. To be ultimately successful, the immune response must be balanced to allow pathogen clearance without excess tissue damage, processes controlled by pro- and anti-inflammatory signals. The roles of anti-inflammatory signalling in raising an appropriate immune response are underappreciated, representing overlooked potential drug targets. This is especially true in neutrophils, a difficult cell type to study ex vivo owing to a short lifespan, dogmatically seen as being highly pro-inflammatory. Here, we have generated and describe the first zebrafish transgenic line [TgBAC(arg2:eGFP)sh571] that labels expression of the anti-inflammatory gene arginase 2 (arg2) and show that a subpopulation of neutrophils upregulate arginase soon after immune challenge with injury and infection. At wound-healing stages, arg2:GFP is expressed in subsets of neutrophils and macrophages, potentially representing anti-inflammatory, polarised immune cell populations. Our findings identify nuanced responses to immune challenge in vivo, responses that represent new opportunities for therapeutic interventions during inflammation and infection.


Asunto(s)
Arginasa , Pez Cebra , Animales , Pez Cebra/metabolismo , Arginasa/genética , Arginasa/metabolismo , Animales Modificados Genéticamente , Neutrófilos , Inflamación , Antiinflamatorios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA