Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Opt ; 28(9): 094808, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37313427

RESUMEN

Significance: The shortwave infrared (SWIR, ∼900 to 2000 nm) holds promise for label-free measurements of water and lipid content in thick tissue, owed to the chromophore-specific absorption features and low scattering in this range. In vivo water and lipid estimations have potential applications including the monitoring of hydration, volume status, edema, body composition, weight loss, and cancer. To the best of our knowledge, there are currently no point-of-care or wearable devices available that exploit the SWIR wavelength range, limiting clinical and at-home translation of this technology. Aim: To design and fabricate a diffuse optical wearable SWIR probe for water and lipid quantification in tissue. Approach: Simulations were first performed to confirm the theoretical advantage of SWIR wavelengths over near infrared (NIR). The probe was then fabricated, consisting of light emitting diodes at three wavelengths (980, 1200, 1300 nm) and four source-detector (S-D) separations (7, 10, 13, 16 mm). In vitro validation was then performed on emulsion phantoms containing varying concentrations of water, lipid, and deuterium oxide (D2O). A deep neural network was developed as the inverse model for quantity estimation. Results: Simulations indicated that SWIR wavelengths could reduce theoretical water and lipid extraction errors from ∼6% to ∼1% when compared to NIR wavelengths. The SWIR probe had good signal-to-noise ratio (>32 dB up to 10 mm S-D) and low drift (<1.1% up to 10 mm S-D). Quantification error in emulsion phantoms was 2.1±1.1% for water and -1.2±1.5% for lipid. Water estimation during a D2O dilution experiment had an error of 3.1±3.7%. Conclusions: This diffuse optical SWIR probe was able to quantify water and lipid contents in vitro with good accuracy, opening the door to human investigations.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Emulsiones , Agua , Lípidos
2.
Biomed Opt Express ; 12(1): 676-688, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33520393

RESUMEN

Spatial frequency domain imaging (SFDI) is a widefield diffuse optical measurement technique capable of generating 2D maps of sub-surface absorption and scattering in biological tissue. We developed a new hyperspectral SFDI instrument capable of collecting images at wavelengths from the visible to the near infrared. The system utilizes a custom-built monochromator with a digital micromirror device (DMD) that can dynamically select illumination wavelength bands from a broadband quartz tungsten halogen lamp, and a second DMD to provide spatially modulated sample illumination. The system is capable of imaging 10 wavelength bands in approximately 25 seconds. The spectral resolution can be varied from 12 to 30 nm by tuning the input slit width and the output DMD column width. We compared the optical property extraction accuracy between the new device and a commercial SFDI system and found an average error of 23% in absorption and 6% in scattering. The system was highly stable, with less than 5% variation in absorption and less than 0.2% variation in scattering across all wavelengths over two hours. The system was used to monitor hyperspectral changes in the optical absorption and reduced scattering spectra of blood exposed to air over 24 hours. This served as a general demonstration of the utility of this system, and points to a potential application for blood stain age estimation. We noted significant changes in both absorption and reduced scattering spectra over multiple discrete stages of aging. To our knowledge, these are the first measurement of changes in scattering of blood stains. This hyperspectral SFDI system holds promise for a multitude of applications in quantitative tissue and diffuse sample imaging.

3.
ACS Macro Lett ; 5(8): 982-986, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35607216

RESUMEN

A new class of H-bond donating ureas was developed for the ring-opening polymerization (ROP) of lactone monomers, and they exhibit dramatic rate acceleration versus previous H-bond mediated polymerization catalysts. The most active of these new catalysts, a tris-urea H-bond donor, is among the most active organocatalysts known for ROP, yet it retains the high selectivity of H-bond mediated organocatalysts. The urea cocatalyst, along with an H-bond accepting base, exhibits the characteristics of a "living" ROP, is highly active, in one case, accelerating a reaction from days to minutes, and remains active at low catalyst loadings. The rate acceleration exhibited by this H-bond donor occurs for all base cocatalysts examined. A mechanism of action is proposed, and the new catalysts are shown to accelerate small molecule transesterifications versus currently known monothiourea catalysts. It is no longer necessary to choose between a highly active or highly selective organocatalyst for ROP.

4.
Macromolecules ; 48(17): 6127-6131, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27182086

RESUMEN

A cocatalyst system consisting of an alkylamine base and a bis(thiourea) featuring a linear alkane tether is shown to dramatically increase the rate of ring-opening polymerization (ROP) of L-lactide versus previously disclosed monothiourea H-bond donors. Rate acceleration occurs regardless of the identity of the alkylamine cocatalyst, and the ROP remains controlled yielding poly(lactide) with narrow molecular weight distributions, predictable molecular weights and high selectivity for monomer. This H-bond mediated ROP of L-lactide constitutes a rare, clear example of rate acceleration with bis(thiourea) H-bond donors versus monothioureas, and the bis(thiourea) is shown to remain highly active for ROP at fractional percent catalyst loadings. Activation at a single monomer ester by both thiourea moieties is implicated as the source of rate acceleration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA