RESUMEN
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Asunto(s)
Pulmón/embriología , Morfogénesis , Estrés Mecánico , Tretinoina/metabolismo , Animales , Células Cultivadas , Simulación por Computador , Células Epiteliales/citología , Células Epiteliales/metabolismo , Pulmón/citología , Pulmón/metabolismo , Ratones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Receptores de Ácido Retinoico/metabolismo , Transducción de SeñalRESUMEN
Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.
Asunto(s)
Matriz Extracelular/fisiología , Pulmón/embriología , Metaloproteinasas de la Matriz/metabolismo , Mesodermo/embriología , Mucosa Respiratoria/embriología , Animales , Membrana Basal/embriología , Líquidos Corporales/fisiología , Forma de la Célula , Embrión de Pollo , Matriz Extracelular/enzimología , Pulmón/enzimología , Pulmón/metabolismo , Mesodermo/enzimología , Morfogénesis , Mucosa Respiratoria/enzimología , Tenascina/metabolismo , Técnicas de Cultivo de TejidosRESUMEN
Corneal avascularity is important for optical clarity and normal vision. However, the molecular mechanisms that prevent angioblast migration and vascularization of the developing cornea are not clear. Previously we showed that periocular angioblasts and forming ocular blood vessels avoid the presumptive cornea despite dynamic ingression of neural crest cells. In the current study, we investigate the role of Semaphorin3A (Sema3A), a cell guidance chemorepellent, on angioblast migration and corneal avascularity during development. We show that Sema3A, Vegf, and Nrp1 are expressed in the anterior eye during cornea development. Sema3A mRNA transcripts are expressed at significantly higher levels than Vegf in the lens that is positioned adjacent to the presumptive cornea. Blockade of Sema3A signaling via lens removal or injection of a synthetic Sema3A inhibitor causes ectopic migration of angioblasts into the cornea and results in its subsequent vascularization. In addition, using bead implantation, we demonstrate that exogenous Sema3A protein inhibits Vegf-induced vascularization of the cornea. In agreement with these findings, loss of Sema/Nrp1 signaling in Nrp1(Sema-) mutant mice results in ectopic angioblasts and vascularization of the embryonic mouse corneas. Altogether, our results reveal Sema3A signaling as an important cue during the establishment of corneal avascularity in both chick and mouse embryos. Our study introduces cornea development as a new model for studying the mechanisms involved in vascular patterning during embryogenesis and it also provides new insights into therapeutic potential for Sema3A in neovascular diseases.
Asunto(s)
Córnea/irrigación sanguínea , Cristalino/irrigación sanguínea , Neuropilina-1/genética , Semaforina-3A/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Animales Modificados Genéticamente , Movimiento Celular , Células Cultivadas , Embrión de Pollo , Córnea/embriología , Células Endoteliales , Cristalino/embriología , Ratones , Neovascularización Fisiológica , Neuropilina-1/biosíntesis , Codorniz/embriología , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/genética , Semaforina-3A/antagonistas & inhibidores , Semaforina-3A/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/biosíntesisRESUMEN
BACKGROUND: During early development, avian embryos are easily accessible in ovo for transplantations and experimental perturbations. However, these qualities of the avian embryonic model rapidly wane shortly after embryonic day (E)4 when the embryo is obscured by extraembryonic membranes, making it difficult to study developmental events that occur at later stages in vivo. RESULTS: In this study, we describe a multistep method that involves initially windowing eggs at E3, followed by dissecting away extraembryonic membranes at E5 to facilitate embryo accessibility in ovo until later stages of development. The majority of the embryos subjected to this technique remain exposed between E5 and E8, then become gradually displaced by the growing allantois from posterior to anterior regions. CONCLUSIONS: Exposed embryos are viable and compatible with embryological and modern developmental biology techniques including tissue grafting and ablation, gene manipulation by electroporation, and protein expression. This technique opens up new avenues for studying complex cellular interactions during organogenesis and can be further extrapolated to regeneration and stem cell studies.
Asunto(s)
Embrión de Pollo/ultraestructura , Biología Evolutiva/métodos , Membranas Extraembrionarias/cirugía , Microdisección/métodos , Animales , Inmunohistoquímica , Microinyecciones/métodosRESUMEN
Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.
Asunto(s)
Dinoflagelados , Infecciones por Virus ARN , Virus ARN , Virus , Humanos , ARN Viral/genética , Ecosistema , Virus ARN/genética , Virus/genética , Dinoflagelados/genética , ARN BicatenarioRESUMEN
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFß2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFß2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
RESUMEN
Chick embryonic corneal wounds display a remarkable capacity to fully and rapidly regenerate, whereas adult wounded corneas experience a loss of transparency due to fibrotic scarring. The tissue integrity of injured embryonic corneas is intrinsically restored with no detectable scar formation. Given its accessibility and ease of manipulation, the chick embryo is an ideal model for studying scarless corneal wound repair. This protocol demonstrates the different steps involved in wounding the cornea of an embryonic chick in ovo. First, eggs are windowed at early embryonic ages to access the eye. Second, a series of in ovo physical manipulations to the extraembryonic membranes are conducted to ensure access to the eye is maintained through later stages of development, corresponding to when the three cellular layers of the cornea are formed. Third, linear cornea wounds that penetrate the outer epithelial layer and the anterior stroma are made using a microsurgical knife. The regeneration process or fully restored corneas can be analyzed for regenerative potential using various cellular and molecular techniques following the wounding procedure. Studies to date using this model have revealed that wounded embryonic corneas display activation of keratocyte differentiation, undergo coordinated remodeling of ECM proteins to their native three-dimensional macrostructure, and become adequately re-innervated by corneal sensory nerves. In the future, the potential impact of endogenous or exogenous factors on the regenerative process could be analyzed in healing corneas by using developmental biology techniques, such as tissue grafting, electroporation, retroviral infection, or bead implantation. The current strategy identifies the embryonic chick as a crucial experimental paradigm for elucidating the molecular and cellular factors coordinating scarless corneal wound healing.
Asunto(s)
Córnea , Lesiones de la Cornea , Animales , Embrión de Pollo , Cicatriz/patología , Córnea/patología , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Proteínas de la Matriz Extracelular/metabolismo , Cicatrización de Heridas/fisiologíaRESUMEN
During development, cells aggregate at tissue boundaries to form normal tissue architecture of organs. However, how cells are segregated into tissue precursors remains largely unknown. Cornea development is a perfect example of this process whereby neural crest cells aggregate in the periocular region prior to their migration and differentiation into corneal cells. Our recent RNA-seq analysis identified upregulation of nephronectin (Npnt) transcripts during early stages of corneal development where its function has not been investigated. We found that Npnt mRNA and protein are expressed by various ocular tissues, including the migratory periocular neural crest (pNC), which also express the integrin alpha 8 (Itgα8) receptor. Knockdown of either Npnt or Itgα8 attenuated cornea development, whereas overexpression of Npnt resulted in cornea thickening. Moreover, overexpression of Npnt variants lacking RGD-binding sites did not affect corneal thickness. Neither the knockdown nor augmentation of Npnt caused significant changes in cell proliferation, suggesting that Npnt directs pNC migration into the cornea. In vitro analyses showed that Npnt promotes pNC migration from explanted periocular mesenchyme, which requires Itgα8, focal adhesion kinase, and Rho kinase. Combined, these data suggest that Npnt augments cell migration into the presumptive cornea extracellular matrix by functioning as a substrate for Itgα8-positive pNC cells.
Asunto(s)
Proteínas de la Matriz Extracelular , Cresta Neural , Animales , Pollos , Córnea/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Cadenas alfa de Integrinas , IntegrinasRESUMEN
Wound healing is characterized by cell and extracellular matrix changes mediating cell migration, fibrosis, remodeling and regeneration. We previously demonstrated that chick fetal wound healing shows a regenerative phenotype regarding the cellular and molecular organization of the cornea. However, the chick corneal stromal structure is remarkably complex in the collagen fiber/lamellar organization, involving branching and anastomosing of collagen bundles. It is unknown whether the chick fetal wound healing is capable of recapitulating this developmentally regulated organization pattern. The purpose of this study was to examine the three-dimensional collagen architecture of wounded embryonic corneas, whilst identifying temporal and spatial changes in collagen organization during wound healing. Linear corneal wounds that traversed the epithelial layer, Bowman´s layer, and anterior stroma were generated in chick corneas on embryonic day 7. Irregular thin collagen fibers are present in the wounded cornea during the early phases of wound healing. As wound healing progresses, the collagen organization dramatically changes, acquiring an orthogonal arrangement. Fourier transform analysis affirmed this observation and revealed that adjacent collagen lamellae display an angular displacement progressing from the epithelium layer towards the endothelium. These data indicate that the collagen organization of the wounded embryonic cornea recapitulate the native macrostructure.
Asunto(s)
Colágeno/metabolismo , Córnea/metabolismo , Córnea/fisiología , Regeneración/fisiología , Cicatrización de Heridas/fisiología , Animales , Embrión de Pollo , Colágeno/química , Córnea/embriología , Endotelio Corneal/metabolismo , Conformación Proteica , Estructura Terciaria de ProteínaRESUMEN
Branched networks are ubiquitous throughout nature, particularly found in tissues that require large surface area within a restricted volume. Many tissues with a branched architecture, such as the vasculature, kidney, mammary gland, lung and nervous system, function to exchange fluids, gases and information throughout the body of an organism. The generation of branched tissues requires regulation of branch site specification, initiation and elongation. Branching events often require the coordination of many cells to build a tissue network for material exchange. Recent evidence has emerged suggesting that cell cooperativity scales with the number of cells actively contributing to branching events. Here, we compare mechanisms that regulate branching, focusing on how cell cohorts behave in a coordinated manner to build branched tissues.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Asunto(s)
Desarrollo Embrionario , Morfogénesis , Animales , Sistema Cardiovascular/embriología , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Humanos , Riñón/embriología , Pulmón/embriología , Glándulas Mamarias Humanas/embriología , Sistema Nervioso/embriologíaRESUMEN
BACKGROUND: New branches within the embryonic chicken lung form via apical constriction, in which epithelial cells in the primary bronchus become trapezoidal in shape. These branches form at precise locations along the primary bronchus that scale relative to the size of the organ. Here, we examined the extent to which this scaling relationship and branching mechanism are conserved within lungs of three species of birds. FINDINGS: Analyzing the development of embryonic lungs from chicken, quail, and duck, as well as lungs explanted and cultured ex vivo, revealed that the patterns of branching are remarkably conserved. In particular, secondary bronchi form at identical positions in chicken and quail, the patterns of which are indistinguishable, consistent with the close evolutionary relationship of these two species. In contrast, secondary bronchi form at slightly different positions in duck, the lungs of which are significantly larger than those of chicken and quail at the same stage of development. Confocal analysis of fixed specimens revealed that each secondary bronchus forms by apical constriction of the dorsal epithelium of the primary bronchus, a morphogenetic mechanism distinct from that used to create branches in mammalian lungs. CONCLUSIONS: Our findings suggest that monopodial branching off the primary bronchus is driven by apical constriction in lungs of chicken, quail, and duck. The relative positions at which these branches form are also conserved relative to the evolutionary relationship of these species. It will be interesting to determine whether these mechanisms hold in more distant species of birds, and why they differ so significantly in mammals.
RESUMEN
The heparan sulfate proteoglycan 2 (HSPG2)/perlecan gene is ancient and conserved in all triploblastic species. Its presence maintains critical cell boundaries in tissue and its large (up to ~900 kDa) modular structure has prompted speculation about the evolutionary origin of the gene. The gene's conservation amongst basal metazoans is unclear. After the recent sequencing of their genomes, the cnidarian Nematostella vectensis and the placozoan Trichoplax adhaerens have become favorite models for studying tissue regeneration and the evolution of multicellularity. More ancient basal metazoan phyla include the poriferan and ctenophore, whose evolutionary relationship has been clarified recently. Our in silico and PCR-based methods indicate that the HSPG2 gene is conserved in both the placozoan and cnidarian genomes, but not in those of the ctenophores and only partly in poriferan genomes. HSPG2 also is absent from published ctenophore and Capsaspora owczarzaki genomes. The gene in T. adhaerens is encoded as two separate but genetically juxtaposed genes that house all of the constituent pieces of the mammalian HSPG2 gene in tandem. These genetic constituents are found in isolated genes of various poriferan species, indicating a possible intronic recombinatory mechanism for assembly of the HSPG2 gene. Perlecan's expression during wound healing and boundary formation is conserved, as expression of the gene was activated during tissue regeneration and reformation of the basement membrane of N. vectensis. These data indicate that the complex HSPG2 gene evolved concurrently in a common ancestor of placozoans, cnidarians and bilaterians, likely along with the development of differentiated cell types separated by acellular matrices, and is activated to reestablish these tissue borders during wound healing.
Asunto(s)
Cnidarios/genética , Ctenóforos/genética , Proteoglicanos de Heparán Sulfato/genética , Placozoa/genética , Poríferos/genética , Regeneración/genética , Secuencia de Aminoácidos , Animales , Membrana Basal/metabolismo , Membrana Basal/ultraestructura , Cnidarios/clasificación , Cnidarios/metabolismo , Cnidarios/ultraestructura , Ctenóforos/clasificación , Ctenóforos/metabolismo , Ctenóforos/ultraestructura , Evolución Molecular , Expresión Génica , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Placozoa/clasificación , Placozoa/metabolismo , Placozoa/ultraestructura , Reacción en Cadena de la Polimerasa , Poríferos/clasificación , Poríferos/metabolismo , Poríferos/ultraestructura , Alineación de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
PURPOSE: Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. METHODS: On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. RESULTS: Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha-smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. CONCLUSIONS: These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea.