Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
IUBMB Life ; 76(7): 368-382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38168122

RESUMEN

Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.


Asunto(s)
Carcinoma de Células Escamosas , Matriz Extracelular , Neoplasias de la Boca , Microambiente Tumoral , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Integrinas/metabolismo , Integrinas/genética , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Transducción de Señal
2.
Mol Biol Rep ; 51(1): 597, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683372

RESUMEN

The incidence of head and neck cancer (HNC), constituting approximately one in ten cancer cases worldwide, affects approximately 644,000 individuals annually. Managing this complex disease involves various treatment modalities such as systemic therapy, radiation, and surgery, particularly for patients with locally advanced disease. HNC treatment necessitates a multidisciplinary approach due to alterations in patients' genomes affecting their functionality. Predominantly, squamous cell carcinomas (SCCs), the majority of HNCs, arise from the upper aerodigestive tract epithelium. The epidemiology, staging, diagnosis, and management techniques of head and neck squamous cell carcinoma (HNSCC), encompassing clinical, image-based, histopathological and molecular profiling, have been extensively reviewed. Lymph node metastasis (LNM) is a well-known predictive factor for HNSCC that initiates metastasis and significantly impacts HNSCC prognosis. Distant metastasis (DM) in HNSCC has been correlated to aberrant expression of cancer cell-derived cytokines and growth factors triggering abnormal activation of several signaling pathways that boost cancer cell aggressiveness. Recent advances in genetic profiling, understanding tumor microenvironment, oligometastatic disease, and immunotherapy have revolutionized treatment strategies and disease control. Future research may leverage genomics and proteomics to identify biomarkers aiding individualized HNSCC treatment. Understanding the molecular basis, genetic landscape, atypical signaling pathways, and tumor microenvironment have enhanced the comprehension of HNSCC molecular etiology. This critical review sheds light on regional and distant metastases in HNSCC, presenting major clinical and laboratory features, predictive biomarkers, and available therapeutic approaches.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Microambiente Tumoral/genética , Metástasis Linfática/genética , Metástasis Linfática/patología , Pronóstico , Metástasis de la Neoplasia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia
3.
Am J Physiol Cell Physiol ; 325(6): C1516-C1531, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37927238

RESUMEN

Head and neck cancer (HNC) encompasses a number of malignancies originating in the head and neck area. In patients with HNC, cervical lymph nodes constitute metastatic sites for cancer cells that escape primary tumors. The premetastatic niche (PMN) is a crucial concept in understanding metastatic disease. PMN refers to the microenvironment resulting mainly from primary tumor cells to foster metastatic tumor cell growth at a distant organ. Tumor microenvironment (TME) plays an important part in the pathogenesis of PMN. A significant prognostic factor is the close association between metastases of lymph nodes and organ dissemination in many different malignancies. The nodal premetastatic niche (NPMN) is a particular type of PMN located within the lymph nodes. NPMN formation is specifically important in HNC as regional lymph node metastasis commonly occurs. The formation happens when tumor cells create a supportive microenvironment within lymph nodes, facilitating their survival, growth, spread, and invasion. This complex mechanism involves multiple steps and cellular interactions between the primary tumor and tumor microenvironment. Several extracellular matrix (ECM) macromolecules, cytokines, and growth factors are implicated in this process. The aim of this article is to present the most recent data on the regulation of the lymph node PMN at molecular and cellular levels in HNC, as well as insights with respect to the relationship between primary tumor cells and the microenvironment of lymph nodes, and the formation of NPMN. We also critically discuss on potential targets for preventing or disrupting nodal metastases and identify potential biomarkers for predicting HNC outcomes.


Asunto(s)
Neoplasias de Cabeza y Cuello , Vasos Linfáticos , Humanos , Metástasis Linfática/patología , Neoplasias de Cabeza y Cuello/patología , Ganglios Linfáticos/patología , Microambiente Tumoral/fisiología
4.
Indian J Palliat Care ; 24(3): 355-358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30111951

RESUMEN

PURPOSE: Several trials on noncancer population indicate that yoga is associated with meaningful clinical effects. This study evaluated the physical and psychosocial outcomes of yoga in oncologic patients treated with radiotherapy. METHODS: We focused on a research through Cochrane Register of Controlled Trials (CENTRAL), BioMed Central, and MEDLINE studies up to May 2017. RESULTS: Yoga was found to have a substantial benefit in cancer patients' distress, anxiety, and depression. It also demonstrated a moderate impact on fatigue and emotional function and a small and insignificant effect on functional well-being and sleep disturbances. As far as the effects on psychological outcomes are concerned, there was insufficient evidence. CONCLUSIONS: This systematic review of randomized controlled trials showed that yoga has strong beneficial effects on oncologic patients' quality of life. Results of the current review must be interpreted with caution due to the relative small sample sizes of most of the included studies, while a prospective randomized study stands in need for the confirmation of our results.

5.
BMC Cancer ; 16: 563, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27473174

RESUMEN

BACKGROUND: Primary invasive Extramammary Paget's vulvar disease is a rare tumor that is challenging to control. Wide surgical excision represents the standard treatment approach for Primary invasive Extramammary Paget's vulvar disease. The goal of the current study was to analyze the appropriate indications of radiotherapy in Primary invasive Extramammary Paget's vulvar disease because they are still controversial. DISCUSSION: We searched the Cochrane Gynecological Cancer Group Trials Register, Cochrane Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE database up to September 2015. Radiotherapy was delivered as a treatment in various settings: i) Radical in 28 cases (range: 60-63 Gy), ii) Adjuvant in 25 cases (range: 39-60 Gy), iii) Salvage in recurrence of 3 patients (63 Gy) and iv) Neoadjuvant in one patient (43.3 Gy). A radiotherapy field that covered the gross tumor site with a 2-5 cm margin for the microscopic disease has been used. Radiotherapy of the inguinal, pelvic or para-aortic lymph node should be considered only for the cases with lymph node metastases within these areas. Radiotherapy alone is an alternative therapeutic approach for patients with extensive inoperable disease or medical contraindications. Definitive radiotherapy can be used in elderly patients and/or with medical contraindications. Adjuvant radiotherapy may be considered in presence of risk factors associated with local recurrence as dermal invasion, lymph node metastasis, close or positive surgical margins, perineal, large tumor diameter, multifocal lesions, extensive disease, coexisting histology of adenocarcinoma or vulvar carcinoma, high Ki-67 expression, adnexal involvement and probably in overexpression of HER-2/neu. Salvage radiotherapy can be given in inoperable loco-regional recurrence and to those who refused additional surgery.


Asunto(s)
Enfermedad de Paget Extramamaria/radioterapia , Dosificación Radioterapéutica , Radioterapia/normas , Neoplasias de la Vulva/radioterapia , Femenino , Humanos , Recurrencia Local de Neoplasia , Radioterapia/métodos , Radioterapia Adyuvante , Terapia Recuperativa , Resultado del Tratamiento
6.
Cancer Diagn Progn ; 4(5): 586-591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238614

RESUMEN

Background/Aim: Concerning primary central nervous system neoplasms, meningiomas demonstrate the most common type in adults worldwide. Deregulation of apoptotic pathways in malignancies, including meningiomas, is correlated with chemoresistance and poor prognosis. Caspases represent crucial proteins that induce cell apoptosis. This study aimed to correlate caspase 3 protein expression levels to meningioma clinic-pathological features. Materials and Methods: A set of fifty (n=50) meningioma lesions was included in the current analysis including a broad spectrum of histopathological subtypes (meningotheliomatous, psammomatus, transitional, fibrous, angiomatous, microcystic, atypical and anaplastic). Immunohistochemistry was implemented on tissue microarray cores of selected paraffin blocks by applying an anti-caspase 3 antibody. Additionally, an image analysis protocol was also performed in the corresponding immunostained slides. Results: Caspase 3 protein over-expression was detected in 17/50 (34%) cases, whereas the remaining 33 cases (66%) were characterized by medium to low levels of the molecule. Caspase 3 expression was statistically significantly associated with the grade of the analyzed tumors and the mitotic index (p=0.002, p=0.001, respectively). Caspase 3 expression status was also correlated with the histotype of the selected meningiomas (p=0.016). Conclusion: Caspase 3 demonstrated low expression levels in a significant subset of the examined meningiomas correlated with differentiation grade, mitotic activity, and partially with specific histotypes. Agents that could enhance caspase 3 expression - inducing its apoptotic activity - represent a very promising area in oncology for developing novel treatment regimens.

7.
Maedica (Bucur) ; 19(2): 373-379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39188848

RESUMEN

INTRODUCTION: Coronary artery disease (CAD) is a major and multifaceted health problem but also the first cause of death in modern Western societies. Furthermore, myocardial infarction (MI) constitutes a challenge for analysis in the field of molecular mechanisms, early diagnosis and therapeutic approaches, as its incidence increases every year worldwide. Concerning the histopathological diagnosis in the corresponding cases, a variety of immunohistochemistry (IHC) markers and methods are available to support conventional histology diagnosis. Immunohistochemistry techniques are effective for use in forensic pathology, expanding the limits of differential diagnoses in borderline cases, as they can be applied to tissue samples fixed in formalin and embedded in paraffin. OBJECTIVE: The purpose of the current review was to explore the role of connexin 43 (gene locus: 6q22.31) as a reliable biomarker of myocardial disease/infarction and its impact on MI pathology. MATERIAL AND METHOD: A systematic review of the literature was carried out based on the international database PubMed. The majority of medical data referred to articles published after the year 2020, whereas specific references of great importance and value were also included. The following keywords were used: coronary, artery, myocardial, infarction, connexin and immunohistochemistry. RESULTS: A pool of 38 significant articles focused on the mechanisms and novel experimental biomarkers was selected for the present study at the basis of combining molecular knowledge with new clinical features in CAD, and MI histodiagnosis. CONCLUSIONS: The role of connexin 43 - as a significant gap junction intermediate protein - in MI pathology, clinical symptoms and prognosis is critical because its dysfunction is involved in myocardial conduction and the onset of ventricular arrhythmias due to a crucial interruption of the intra-cardiomyocyte's conjunction.

8.
Cancer Diagn Progn ; 4(2): 129-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434910

RESUMEN

Background/Aim: The tumor protein 53 (TP53) tumor suppressor protein (17p13.1) acts as a significant regulator for the cell cycle normal function. The gene is frequently mutated in colorectal adenocarcinoma (CRC) patients and is associated to poor prognosis and low response rates to chemo-targeted therapy. Our purpose was to correlate TP53 expression with Mouse Double Minute 2 Homolog (MDM2), a proto-oncogene (12q14.3) and a major negative regulator in the TP53-MDM2 auto-regulatory pathway. Materials and Methods: A total of forty (n=40) colorectal adenocarcinoma (CRC) cases were included in this study. An immunohistochemistry-based assay was implemented by using anti-TP53 and anti-MDM2 antibodies in the corresponding tissue sections. Additionally, a digital image analysis assay was implemented for objectively measuring TP53/MDM2 immunostaining intensity levels. Results: TP53 protein overexpression was detected in 27/40 (67.5%), whereas MDM2 overexpression in 28/40 (70%) cases. Interestingly, in 21/40 (52.5%) cases, a combined TP53/MDM2 co-expression was detected, whereas in 6/40 (15%), a combined loss of expression was identified (overall co-expression: p=0.119). p53 overexpression was significantly correlated to grade of the examined cases (p=0.001), whereas MDM2 to stage and max diameter of the malignancies (p=0.001 and 0.024, respectively). Conclusion: TP53/MDM2 over expression is a frequent and significant genetic event in CRCs associated with an aggressive biological behavior, as a result of increased dedifferentiation grade and advanced stage/elevated tumor volume, respectively. MDM2 oncogene overactivation combined with mutated and overexpressed TP53 is observed in sub-groups of patients leading to specific gene/protein signatures - targets for personalized chemotherapeutic approaches.

9.
Maedica (Bucur) ; 19(2): 355-359, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39188831

RESUMEN

INTRODUCTION: Onset and progression of malignant tumors is a multistep process including a variety of gross chromosomal and specific genes' deregulation. Among oncogenes that are frequently altered in solid and also in hematological malignancies, the C-myc (gene locus: 8q24.21) plays a pivotal role. C-myc is a proto-oncogene encoding for a nuclear phosphoprotein implicated in cell cycle progression, apoptosis and cellular differentiation and transformation. OBJECTIVE: The purpose of the current molecular review was to explore the differences of C-myc oncogenic activity in solid and lymphoid malignancies that modify its clinical impact on them. MATERIAL AND METHOD: A systematic review of the literature in the international database PubMed was carried out. The year 2010 was set as a prominent time limit for the publication date of articles in the majority of them, whereas specific references of great importance and historical value in the field of C-myc gene discovery and analysis were also included. The following keywords were used: C-myc, oncogene, signaling pathway, malignancies, carcinoma, lymphoma. A pool of 43 important articles were selected for the present study at the basis of combining molecular knowledge with new targeted therapeutic strategies. RESULTS: C-myc oncogene demonstrates two different mechanisms of deregulation: amplification, mutation and translocation patterns. These particular aspects of gene alteration are unique for solid and non-solid (hematological) malignancies, respectively. CONCLUSIONS: C-myc is characterized by diversity regarding its deregulation mechanisms in malignancies derived from different tissues. C-myc translocation is sporadically combined with amplification ("complicon" formation) or mutations creating exotic genetic signatures. This "bi-phasic" C-myc deregulation model in the corresponding malignant tumor categories clinically affects the corresponding patients, also modifying the targeted therapeutic strategies on them.

10.
Cancer Diagn Progn ; 4(1): 25-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173659

RESUMEN

Among the tumour suppressor genes that affect critically cell functions and homeostasis, phosphatase and tensin homolog deleted in chromosome 10 (PTEN- gene locus: 10q21) regulates the PI3K/Akt/mTOR signalling pathway. PTEN is deleted, mutated or epigenetically hyper-methylated in a variety of human solid malignancies. Salivary gland carcinomas (SGCs) belong to the head and neck carcinomas (HNCs) super category of solid malignancies. Histo-pathologically, they demonstrate a significant diversity due to a variety of distinct and mixed subtypes. Genetically, they are characterized by a broad spectrum of gene and chromosomal imbalances. Referring specifically to suppressor genes, PTEN deregulation plays a critical role in signaling transduction in the corresponding SGC pre- and malignant epithelia modifying the response rates to potential targeted therapeutic strategies. In the current review, we explored the role of PTEN deregulation mechanisms that are involved in the onset and progression of SGCs.

11.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37046817

RESUMEN

Exosomes are nanosized vesicles that are produced in normal and cancer cells, promoting intracellular communication. In head and neck cancer (HNC), exosomes are involved in many undesirable events of cancer development and progression, including angiogenesis, tumor microenvironment (TME) remodeling, invasion, epithelial-to-mesenchymal transition (EMT), metastasis, extracellular matrix (ECM) degradation, and drug resistance. Exosomes are involved in altering the signaling pathways in recipient cells by the cargoes they carry. Proteins, lipids, and nucleic acids such as DNA fragments and RNAs (i.e., mRNAs, miRNAs, and long non-coding RNAs) are carried in the exosomes to promote cell communication. EMT is a critical cellular process in which epithelial cells are forced to become mesenchymal cells by the actions of SNAIL/SLUG, TWIST, and ZEB family transcription factors carried in exosomes that facilitate metastasis. In this critical review, we focused on exosome biogenesis, their cargoes, and their involvement in EMT induction and metastasis during HNC. Insights into exosome isolation and characterization, as well as their key role in ECM remodeling and degradation, are also presented and critically discussed. More importantly, this article addresses the role of exosomes in HNC and drug resistance induced in drug-sensitive cancer cells. In addition, exosomes have a great potential to be used as diagnostic and therapeutic tools. A better understanding on exosome biogenesis, composition, and functions in HNC will aid in developing novel therapeutic strategies to treat HNC, overcome therapy resistance, and avoid metastasis, which is a significant cause of cancer death.

12.
Cancer Diagn Progn ; 3(3): 297-301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168957

RESUMEN

Calpains belong to a family of important calcium-dependent cysteine proteases. They are involved in intracellular processes including cytoskeleton disorganization and substrate proteolysis. They also enhance apoptosis and cell to cell adhesion. Calpains demonstrate also a mechanosensory function in neoplastic and malignant cells due to their implication in mechanoptosis. This is a specific type of apoptotic death induced by strong external mechanical stimuli. Anti-cytoskeleton rigidity inhibition strategies based on calpain induction lead to increased apoptosis of tumor transformed cells. Elevated intracellular calcium concentration mediated by specific receptors and channels activates calpains. In the current molecular review, we explored the role of calpains in calcium-dependent signa transduction pathways in breast adenocarcinoma in conjunction with novel agents that activate their important anti-tumor functions.

13.
Cancer Diagn Progn ; 3(4): 411-415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405215

RESUMEN

Salivary gland carcinomas belong to the head and neck carcinoma super category of malignancies. They are characterized by histopathological diversity and comprise a variety of entities and subtypes. Mucoepidermoid, adenoid cystic and salivary duct carcinomas represent the most prominent malignancies. Concerning their corresponding genetic background, a broad spectrum of gene and chromosomal imbalances has been detected. Point mutations and deletions, amplifications and translocations, combined or not with chromosomal aneuploidy/polysomy/monosomy, create a landscape of specific genetic signatures that affect the biological behavior of these tumors and modify response rates to potential targeted therapeutic strategies. In the current molecular review, we focused on the categorization and description of the most important mutational signatures in salivary gland carcinomas.

14.
Cancer Diagn Progn ; 3(2): 169-174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875308

RESUMEN

DNA mismatch repair system (MMR) is considered a leading genetic mechanism in stabilizing DNA structure and maintaining its function. DNA MMR is a highly conserved system in bacteria, prokaryotic, and eukaryotic cells, and provides the highest protection to DNA by repairing micro-structural alterations. DNA MMR proteins are involved in the detection and repair of intra-nucleotide base-to-base errors inside the complementary DNA strand recognizing the recently synthesized strand from the parental template. During DNA replication, a spectrum of errors including base insertion, deletion, and miss-incorporation negatively affect the molecule's structure and its functional stability. A broad spectrum of genomic alterations such as promoter hyper methylation, mutation, and loss of heterozygosity (LOH) in MMR genes including predominantly hMLH1, hMSH2, hMSH3, hMSH6, hPMS1, and hPMS2 lead to their loss of base-to-base error repairing procedure. Microsatellite instability (MSI) refers to the DNA MMR gene alterations that are observed in a variety of malignancies of different histological origins. In the current review, we present the role of DNA MMR deficiency in breast adenocarcinoma, a leading cancer-based cause of death in females worldwide.

15.
Cancer Diagn Progn ; 3(2): 151-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875315

RESUMEN

Alterations in significant genes located on chromosome 7 - including epidermal growth factor receptor (EGFR) and also v-Raf murine sarcoma viral oncogene homolog B (BRAF) as a mitogen-activated protein kinase (MAPK)  - combined or not with numerical imbalances of the whole chromosome (aneuploidy-polysomy) are crucial genetic events involved in the development and progression of malignancies. Identification of EGFR/BRAF-dependent specific somatic mutations and other mechanisms of deregulation (i.e., amplification) is critical for applying targeted therapeutic approaches [tyrosine kinase inhibitors (TKIs] or monoclonal antibodies (mAbs). Thyroid carcinoma is a specific pathological entity characterized by a variety of histological sub-types. Follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC) represent its main sub-types. In the current review, we explore the role of EGFR/BRAF alterations in thyroid carcinoma in conjunction with the corresponding anti-EGFR/BRAF TKI-based novel therapeutic strategies for patients with specific genetic signatures.

16.
Cancer Diagn Progn ; 3(1): 26-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632585

RESUMEN

Thyroid carcinoma represents a leading malignancy among those derived from human endocrine systems. It comprises a variety of different histological subtypes, including mainly papillary carcinoma, follicular carcinoma, anaplastic carcinoma, and medullar carcinoma. A broad spectrum of genetic imbalances, comprising gross chromosomal (polysomy/aneuploidy) and specific gene (mutations, amplifications, deletions) alterations, has been reported. Interestingly, the role of isolated, specific gene polymorphisms, especially of the single nucleotide polymorphism (SNP) type, in thyroid carcinoma is under investigation. SNPs are the most common genetic variations in the genome. The current molecular review focuses on the impact of specific SNPs on the biological behavior of papillary thyroid carcinoma in their carriers.

17.
Cancer Diagn Progn ; 3(5): 528-532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671310

RESUMEN

In normal epithelia, proto-oncogenes regulate critical intra- or intercellular functions, including cell growth and proliferation, apoptosis, and signaling transduction from the cell periphery (extracellular space) to the nucleus mediated by different pathways. Oncogenes are the mutated or amplified forms of the corresponding proto-oncogenes that are crucially involved in cell neoplastic and malignant transformation during carcinogenesis. Salivary gland carcinomas (SGCs) demonstrate a variety of histogenetic types. They are characterized by a broad spectrum of chromosomal and gene alterations. In particular, amplifications in specific genes [human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 4 (HER4), epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Mouse double minute 2 homolog (MDM2), androgen receptor (AR), programmed death (ligand 1 (PD-L1), neurogenic differentiation factor 2 (NEUROD2), phosphatidylinositol 3,4,5-trisphosphate-dependent RAC exchanger 1 protein (PREX1), cyclin-dependent kinase4/6 (CDK4/6), proline-rich acidic protein 1 (PRAP1), kell antigen system (KEL), glutamate receptor subunit epsilon 2 (GRIN2D), Ewing sarcoma RNA-binding protein 1 (EWSR1), MYC proto-oncogene (MYC)] combined or not with chromosomal numerical imbalances (aneuploidy/ polysomy/monosomy) form different genetic signatures affecting the response to monoclonal antibody-based, oncologicaly targeted regimens. Different SGC histotypes demonstrate specific combinations of mutated/amplified genes that modify their clinicohistological features. In the current molecular review, we present the most important amplified oncogenes and their impact on the biological behavior of SGCS.

18.
Acta Med Port ; 35(6): 476-483, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029527

RESUMEN

INTRODUCTION: Oxygen therapy remains the cornerstone for managing patients with severe SARS-CoV-2 infection and several modalities of non-invasive ventilation are used worldwide. High-flow oxygen via nasal canula is one therapeutic option which may in certain cases prevent the need of mechanical ventilation. The aim of this review is to summarize the current evidence on the use of high-flow nasal oxygen in patients with severe SARS-CoV-2 infection. MATERIAL AND METHODS: We conducted a systematic literature search of the databases PubMed and Cochrane Library until April 2021 using the following search terms: "high flow oxygen and COVID-19" and "high flow nasal and COVID-19". RESULTS: Twenty-three articles were included in this review, in four of which prone positioning was used as an adjunctive measure. Most of the articles were cohort studies or case series. High-flow nasal oxygen therapy was associated with a reduced need for invasive ventilation compared to conventional oxygen therapy and led to an improvement in secondary clinical outcomes such as length of stay. The efficacy of high-flow nasal oxygen therapy was comparable to that of other non-invasive ventilation options, but its tolerability is likely higher. Failure of this modality was associated with increased mortality. CONCLUSION: High flow nasal oxygen is an established option for respiratory support in COVID-19 patients. Further investigation is required to quantify its efficacy and utility in preventing the requirement of invasive ventilation.


Introdução: A oxigenoterapia continua a ser o pilar do tratamento de doentes com infecção grave por SARS-CoV-2 e várias modalidades de ventilação não invasiva são usadas em todo o mundo. O oxigénio de alto fluxo via cânula nasal é uma opção terapêutica que pode, em certos casos, evitar a necessidade de ventilação mecânica. Material e Métodos: Realizámos uma pesquisa sistemática da literatura nas bases de dados PubMed e Cochrane Library até abril de 2021 usando os seguintes termos de pesquisa: "oxigénio de alto fluxo e COVID-19" e "alto fluxo nasal e COVID-19". Resultados: Vinte e três artigos foram incluídos nesta revisão, em quatro dos quais a posição de decúbito ventral foi usada como medida adjuvante. A maioria dos artigos eram estudos de coorte ou séries de casos. A oxigenoterapia nasal de alto fluxo pode reduzir a necessidade de ventilação invasiva em comparação com a oxigenoterapia convencional e pode melhorar os resultados clínicos. A eficácia da oxigenoterapia nasal de alto fluxo é comparável à de outras opções de ventilação não invasiva, embora a sua tolerabilidade seja provavelmente superior. O insucesso dessa modalidade está associado ao aumento da mortalidade. Conclusão: O oxigénio nasal de alto fluxo é uma opção estabelecida para suporte respiratório em doentescom COVID-19. É necessária investigação adicional para medir a sua eficácia e utilidade na prevenção da necessidade de ventilação invasiva.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , COVID-19/terapia , Oxígeno/uso terapéutico , SARS-CoV-2 , Insuficiencia Respiratoria/tratamiento farmacológico , Terapia por Inhalación de Oxígeno
19.
Cureus ; 14(6): e26182, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35891812

RESUMEN

BACKGROUND: Caspases (cysteine-aspartic proteases) represent a family of enzymes that critically influence cell homeostasis by being involved in inflammation and apoptosis mechanisms. Meningiomas demonstrate the most common intracranial primary central nervous system tumors in adults worldwide. AIM: Our purpose was to explore the role of caspase 8 expression in meningiomas' pathological features. MATERIALS AND METHODS: A total of 50 meningioma cases were included in the study, comprising a broad spectrum of histopathological sub-types. An immunohistochemistry assay was applied on tissue microarray cores followed by digital image analysis. RESULTS: Overexpression of caspase 8 protein was observed in 21/50 (42%) cases, whereas the rest of them (29/50, 58%) demonstrated moderate to low levels of the molecule. Caspase 8 overall expression was statistically significantly correlated to grade of the examined tumors and to mitotic index (p=0.001,p=0.002, respectively). CONCLUSIONS: Caspase 8 aberrant expression is observed in meningiomas associated with their differentiation grade and mitotic activity. Targeted therapeutic strategies focused on enhancing caspase 8 expression and also inducing the overall apoptotic activity should be a very promising approach in rationally handling sub-groups of meningioma patients.

20.
Cancer Diagn Progn ; 2(6): 603-608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340455

RESUMEN

Breast adenocarcinoma is a leading cause of death in females worldwide. A broad spectrum of genetic and epigenetic alterations has been already identified and reported in millions of examined cancerous substrates, evidence of a high-level genomic heterogeneity that characterizes these malignancies. Concerning epigenetic changes and imbalances that critically affect progression and prognosis in the corresponding patients, DNA methylation, histone modifications (acetylation), micro-RNAs (miRs) alterations and chromatin re-organization represent the main mechanisms. Referring to DNA methylation, promoter hyper-hypo methylation in critical tumour suppressor and oncogenes is implicated in normal epithelia transformation to their neoplastic and finally malignant cyto-phenotypes. The current review is focused on the different methylation patterns and mechanisms detected in breast adenocarcinoma and their impact on the corresponding groups of patient response to specific chemotherapeutic regimens and life span prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA