Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 150-163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898272

RESUMEN

Here, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord1. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice. We leveraged the Tabulae Paralytica to develop a rejuvenative gene therapy that re-established this tripartite barrier, and restored the natural recovery of walking after paralysis in old mice. The Tabulae Paralytica provides a window into the pathobiology of SCI, while establishing a framework for integrating multimodal, genome-scale measurements in four dimensions to study biology and medicine.


Asunto(s)
Núcleo Celular , Epigenómica , Multiómica , Neuronas , Análisis de la Célula Individual , Traumatismos de la Médula Espinal , Transcriptoma , Animales , Femenino , Masculino , Ratones , Atlas como Asunto , Núcleo Celular/metabolismo , Neuronas/patología , Neuronas/metabolismo , Parálisis/genética , Parálisis/patología , Parálisis/rehabilitación , Parálisis/terapia , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/terapia , Caminata , Anatomía Artística , Vías Nerviosas , Terapia Genética
2.
Nature ; 611(7936): 540-547, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352232

RESUMEN

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Asunto(s)
Neuronas , Parálisis , Traumatismos de la Médula Espinal , Médula Espinal , Caminata , Animales , Humanos , Ratones , Neuronas/fisiología , Parálisis/genética , Parálisis/fisiopatología , Parálisis/terapia , Médula Espinal/citología , Médula Espinal/fisiología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Caminata/fisiología , Estimulación Eléctrica , Región Lumbosacra/inervación , Rehabilitación Neurológica , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
3.
Nature ; 590(7845): 308-314, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505019

RESUMEN

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Asunto(s)
Barorreflejo , Biomimética , Hemodinámica , Prótesis e Implantes , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Vías Nerviosas , Primates , Ratas , Ratas Endogámicas Lew , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología
4.
N Engl J Med ; 386(14): 1339-1344, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388667

RESUMEN

Orthostatic hypotension is a cardinal feature of multiple-system atrophy. The upright posture provokes syncopal episodes that prevent patients from standing and walking for more than brief periods. We implanted a system to restore regulation of blood pressure and enable a patient with multiple-system atrophy to stand and walk after having lost these abilities because of orthostatic hypotension. This system involved epidural electrical stimulation delivered over the thoracic spinal cord with accelerometers that detected changes in body position. (Funded by the Defitech Foundation.).


Asunto(s)
Terapia por Estimulación Eléctrica , Hipotensión Ortostática , Atrofia de Múltiples Sistemas , Acelerometría , Atrofia , Presión Sanguínea/fisiología , Terapia por Estimulación Eléctrica/métodos , Electrodos Implantados , Espacio Epidural , Humanos , Hipotensión Ortostática/diagnóstico , Hipotensión Ortostática/etiología , Hipotensión Ortostática/terapia , Atrofia de Múltiples Sistemas/terapia , Postura/fisiología , Vértebras Torácicas
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1311-H1322, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367686

RESUMEN

Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedades Cardiovasculares , Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Arteria Carótida Común , Arterias Carótidas , Arteria Cerebral Media , Traumatismos de la Médula Espinal/complicaciones
6.
Nat Methods ; 16(5): 381-386, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962620

RESUMEN

Single-cell transcriptomics provides an opportunity to characterize cell-type-specific transcriptional networks, intercellular signaling pathways and cellular diversity with unprecedented resolution by profiling thousands of cells in a single experiment. However, owing to the unique statistical properties of scRNA-seq data, the optimal measures of association for identifying gene-gene and cell-cell relationships from single-cell transcriptomics remain unclear. Here, we conducted a large-scale evaluation of 17 measures of association for their ability to reconstruct cellular networks, cluster cells of the same type and link cell-type-specific transcriptional programs to disease. Measures of proportionality were consistently among the best-performing methods across datasets and tasks. Our analysis provides data-driven guidance for gene and cell network analysis in single-cell transcriptomics.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Análisis de la Célula Individual/métodos , Animales , Enfermedades Cardiovasculares/genética , Línea Celular , Enfermedades del Sistema Nervioso Central/genética , Análisis por Conglomerados , Humanos , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Programas Informáticos
7.
Spinal Cord ; 60(5): 444-450, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35347266

RESUMEN

STUDY DESIGN: Retrospective cross-sectional epidemiological study. OBJECTIVES: Previous studies have quantified longitudinal psychological morbidity in individuals with spinal cord injury (SCI) relative to uninjured individuals. However, there is limited information regarding how lifestyle and socioeconomic factors are associated with mental health conditions in individuals with SCI. This study aims to quantify and compare mental health and suicidal thoughts in people with and without SCI, and examine the associations between mental health, suicidal thoughts, sex, age, lifestyle, and socioeconomic factors. SETTING: Canada. METHODS: The 2010 Canadian Community Health Survey (n > 40,000) was used, which includes several measures assessing mental health and suicidal thoughts. Bivariate and multivariate logistic regressions were performed and odds ratios with corresponding 95% confidence intervals were estimated. Sensitivity analyses were performed to evaluate the effect of covariates on reported effect sizes. RESULTS: People with SCI had higher odds of having mood (3.6) and anxiety disorders (2.5), suicidal thoughts (2.3), self-perceived stress (1.9), and depression (4.4); in addition to lower odds of having good self-perceived mental health (0.24) and satisfaction with life (0.25). These differences persisted after adjusting for age, sex, lifestyle, and socioeconomic factors. Lower household income, fruit and vegetable consumption, and physical activity levels, and increased smoking use were associated with poorer mental health in individuals with SCI. CONCLUSIONS: Mental health is poorer in those with SCI when compared with the general population. Those with SCI exhibit a unique profile of lifestyle and socioeconomic factors that are associated with poorer mental health and increased suicidal thoughts.


Asunto(s)
Traumatismos de la Médula Espinal , Ideación Suicida , Canadá/epidemiología , Estudios Transversales , Humanos , Salud Mental , Estudios Retrospectivos , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/psicología
8.
Spinal Cord ; 59(9): 1018-1025, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33051562

RESUMEN

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To identify the prevalence of complications associated with intermittent catheterization in wheelchair athletes with spinal cord injury (SCI). SETTING: International and national sporting events. METHODS: A total 130 competitive wheelchair athletes living with SCI completed a self-reported questionnaire during international or national sporting events. The questionnaire collected information regarding demographics, injury characteristics, method of bladder emptying, and complications related to intermittent catheterization. RESULTS: Overall, 84% (109/130) of wheelchair athletes used intermittent catheterization. Within this group, 77% of athletes (84/109) experienced at least one complication associated with intermittent catheterization. Twenty-seven percent (29/109) sustained urethral injuries and 63% (69/109) had at least one episode of urinary tract infection during the last 12 months. Almost one-fourth of male athletes (22/95, 23%) had a history of inflammation / infection of genital organs associated with intermittent catheterization. CONCLUSIONS: Here we report a high prevalence of self-reported complications associated with intermittent catheterization in wheelchair athletes with SCI. Considering their potential impact on lower urinary tract function, athletic performance, and health, further studies are needed to assess the role of preventative strategies to reduce complications related to intermittent catheterization in wheelchair athletes with SCI. SPONSORSHIP: Coloplast Brazil and Instituto Lado a Lado pela Vida (a nongovernmental, nonprofit organization based in São Paulo) and Wellspect provided funding for this study.


Asunto(s)
Rendimiento Atlético , Cateterismo Uretral Intermitente , Paratletas , Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Brasil/epidemiología , Estudios Transversales , Humanos , Cateterismo Uretral Intermitente/efectos adversos , Masculino , Prevalencia , Autoinforme , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/epidemiología , Vejiga Urinaria Neurogénica/epidemiología , Vejiga Urinaria Neurogénica/etiología
9.
Clin J Sport Med ; 30(1): 33-39, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855910

RESUMEN

OBJECTIVE: To examine differences in heart rate (HR) responses during international wheelchair rugby competition between athletes with and without a cervical spinal cord injury (SCI) and across standardized sport classifications. DESIGN: Observational study. SETTING: The 2015 Parapan American Games wheelchair rugby competition. PARTICIPANTS: Forty-three male athletes (31 ± 8 years) with a cervical SCI (n = 32) or tetraequivalent impairment (non-SCI, n = 11). MAIN OUTCOME MEASURES: Average and peak HR (HRavg and HRpeak, respectively). To characterize HR responses in accordance with an athletes' International Wheelchair Rugby Federation (IWRF) classification, we separated athletes into 3 groups: group I (IWRF classification 0.5-1.5, n = 15); group II (IWRF classification 2.0, n = 15); and group III (IWRF classification 2.5-3.5, n = 13). RESULTS: Athletes with SCI had lower HRavg (111 ± 14 bpm vs 155 ± 13 bpm) and HRpeak (133 ± 12 bpm vs 178 ± 13 bpm) compared with non-SCI (both P < 0.001). Average HR was higher in group III than in I (136 ± 25 bpm vs 115 ± 20 bpm, P = 0.045); however, SCI athletes showed no difference in HRavg or HRpeak between groups. Within group III, SCI athletes had lower HRavg (115 ± 6 bpm vs 160 ± 8 bpm) and HRpeak (135 ± 11 bpm vs 183 ± 11 bpm) than non-SCI athletes (both P < 0.001). CONCLUSIONS: This study is the first to demonstrate attenuated HR responses during competition in SCI compared with non-SCI athletes, likely due to injury to spinal autonomic pathways. Among athletes with SCI, IWRF classification was not related to differences in HR. Specific assessment of autonomic function after SCI may be able to predict HR during competition and consideration of autonomic impairments may improve the classification process.


Asunto(s)
Rendimiento Atlético/fisiología , Fútbol Americano/fisiología , Frecuencia Cardíaca/fisiología , Cuadriplejía/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Deportes para Personas con Discapacidad/fisiología , Adulto , Presión Sanguínea/fisiología , Capacidad Cardiovascular/fisiología , Conducta Competitiva/fisiología , Humanos , Masculino , Sistema Nervioso Simpático/fisiopatología , Silla de Ruedas , Adulto Joven
10.
Am J Physiol Heart Circ Physiol ; 316(3): H722-H733, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575438

RESUMEN

Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.


Asunto(s)
Selectina E/sangre , Endotelio Vascular/fisiopatología , Respuesta al Choque Térmico , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Arterias/diagnóstico por imagen , Biomarcadores/sangre , Vértebras Cervicales/lesiones , Endotelio Vascular/diagnóstico por imagen , Femenino , Hemorreología , Humanos , Hipertermia Inducida , Masculino , Microvasos/diagnóstico por imagen , Persona de Mediana Edad
11.
Spinal Cord ; 57(11): 979-984, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31289366

RESUMEN

STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.


Asunto(s)
Circulación Cerebrovascular/fisiología , Vértebras Cervicales/diagnóstico por imagen , Hipertermia Inducida/métodos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Vértebras Cervicales/lesiones , Femenino , Humanos , Hipertermia Inducida/tendencias , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/terapia
12.
Am J Physiol Heart Circ Physiol ; 314(5): H1108-H1114, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600896

RESUMEN

The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) is crucial to prevent stroke, the incidence of which is three- to fourfold elevated after spinal cord injury (SCI). Disruption of descending sympathetic pathways within the spinal cord due to cervical SCI may result in impaired cerebrovascular buffering. Only linear analyses of cerebrovascular buffering of BP, such as transfer function, have been used in SCI research. This approach does not account for inherent nonlinearity and nonstationarity components of cerebrovascular regulation, often depends on perturbations of BP to increase the statistical power, and does not account for the influence of arterial CO2 tension. Here, we used a nonlinear and nonstationary analysis approach termed wavelet decomposition analysis (WDA), which recently identified novel sympathetic influences on cerebrovascular buffering of BP occurring in the ultra-low-frequency range (ULF; 0.02-0.03Hz). WDA does not require BP perturbations and can account for influences of CO2 tension. Supine resting beat-by-beat BP (Finometer), middle cerebral artery blood velocity (transcranial Doppler), and end-tidal CO2 tension were recorded in cervical SCI ( n = 14) and uninjured ( n = 16) individuals. WDA revealed that cerebral blood flow more closely follows changes in BP in the ULF range ( P = 0.0021, Cohen's d = 0.89), which may be interpreted as an impairment in cerebrovascular buffering of BP. This persisted after accounting for CO2. Transfer function metrics were not different in the ULF range, but phase was reduced at 0.07-0.2 Hz ( P = 0.03, Cohen's d = 0.31). Sympathetically mediated cerebrovascular buffering of BP is impaired after SCI, and WDA is a powerful strategy for evaluating cerebrovascular buffering in clinical populations.


Asunto(s)
Presión Arterial , Arteria Braquial/fisiopatología , Circulación Cerebrovascular , Arteria Cerebral Media/fisiopatología , Modelos Cardiovasculares , Traumatismos de la Médula Espinal/fisiopatología , Ultrasonografía Doppler Transcraneal/métodos , Análisis de Ondículas , Adaptación Fisiológica , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/inervación , Valor Predictivo de las Pruebas , Traumatismos de la Médula Espinal/diagnóstico , Sistema Nervioso Simpático/fisiopatología
13.
Exp Physiol ; 103(2): 179-189, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29235182

RESUMEN

NEW FINDINGS: What is the central question of this study? How does the severity of spinal cord injury affect left ventricular mechanics, function and the underlying cardiomyocyte morphology? What is the main finding and its importance? Here, we show that severe, but not moderate, spinal cord injury causes cardiomyocyte atrophy, altered left ventricular mechanics and impaired cardiac function. The principal aim of the present study was to assess how the severity of spinal cord injury (SCI) affects left ventricular (LV) mechanics, function and underlying cardiomyocyte morphology. Here, we used different severities of T3 spinal cord contusions (MODERATE, 200 kdyn contusion; SEVERE, 400 kdyn contusion; SHAM) and combined standard echocardiography with speckle tracking analyses to investigate in vivo cardiac function and deformation (contractility) after experimental SCI in the Wistar rat. In addition, we investigated changes in the intrinsic structure of cardiac myocytes ex vivo. We demonstrate that SEVERE SCI induces a characteristic decline in LV chamber size and a reduction in in vivo LV deformation (i.e. radial strain) throughout the entire systolic portion of the cardiac cycle [25.6 ± 3.0 versus 44.5 ± 8.1% (Pre-injury); P = 0.0029]. SEVERE SCI also caused structural changes in cardiomyocytes, including decreased length [115.6 ± 7.63 versus 125.8 ± 6.75 µm (SHAM); P = 0.0458], decreased width [7.78 ± 0.71 versus 10.78 ± 1.08 µm (SHAM); P = 0.0015] and an increase in the length/width ratio [14.88 ± 0.66 versus 11.74 ± 0.89 (SHAM); P = 0.0018], which was significantly correlated with LV flow-generating capacity after SCI (i.e. stroke volume, R2  = 0.659; P = 0.0013). Rats with MODERATE SCI exhibited no changes in any metric versus SHAM. This is the first study to demonstrate that the severity of SCI determines the course of changes in the intrinsic structure of cardiomyocytes, which are directly related to contractile function of the LV.


Asunto(s)
Atrofia/fisiopatología , Ventrículos Cardíacos/fisiopatología , Miocitos Cardíacos/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas Wistar , Médula Espinal/fisiopatología , Volumen Sistólico/fisiología
14.
Med Educ ; 52(5): 536-545, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532953

RESUMEN

CONTEXT: MD/PhD programmes provide structured paths for physician-scientist training. However, considerable proportions of graduates of these programmes do not pursue careers in research consistent with their training. OBJECTIVES: We sought to identify factors associated with sustained involvement in research after completion of all postgraduate training. METHODS: Anonymised data from a national survey of Canadian MD/PhD programme graduates who had completed all physician-scientist training (n = 70) were analysed. Multivariable logistic regression was used to measure the associations between characteristics of graduates and five indicators of sustained research involvement following postgraduate training: (i) protected research time in the current appointment; (ii) percentage of time dedicated to research; (iii) planned future involvement in research; (iv) role as a principal investigator on a recent funded project, and (v) receipt of funding from a federal granting agency since graduation. RESULTS: The majority of graduates were significantly involved in research on the basis of at least one outcome. Completion of a research fellowship, number of first-authored or co-authored manuscripts published during MD/PhD training, and duration of MD/PhD training were positively associated with continued research involvement. Completion of a Masters degree prior to MD/PhD training, female gender, debt greater than CAD$50 000 at completion of training, and pursuit of a clinical specialty other than internal medicine, paediatrics, neurology, pathology and the surgical specialties were negatively associated with sustained research involvement. CONCLUSIONS: Most MD/PhD programme graduates remain significantly involved in research, but this involvement often does not correspond to traditional physician-scientist roles, in which a majority of time is dedicated to research. To minimise loss of investment in physician-scientist training, MD/PhD programmes should prioritise research productivity during training and the pursuit of additional research training during residency, and policymakers should establish stable sources of funding to reduce debt among graduates. Our data suggest further study is warranted to identify interventions to reduce attrition among female MD/PhD programme graduates.


Asunto(s)
Investigación Biomédica/educación , Selección de Profesión , Educación de Postgrado en Medicina , Internado y Residencia/estadística & datos numéricos , Médicos/estadística & datos numéricos , Apoyo a la Formación Profesional/estadística & datos numéricos , Canadá , Femenino , Humanos , Masculino
15.
Am J Physiol Heart Circ Physiol ; 313(5): H861-H870, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28710067

RESUMEN

Active upper-limb and passive lower-limb exercise are two interventions used in the spinal cord injury (SCI) population. Although the global cardiac responses have been previously studied, it is unclear how either exercise influences contractile cardiac function. Here, the cardiac contractile and volumetric responses to upper-limb (swim) and passive lower-limb exercise were investigated in rodents with a severe high-thoracic SCI. Animals were divided into control (CON), SCI no exercise (NO-EX), SCI passive hindlimb cycling (PHLC), or SCI swim (SWIM) groups. Severe contusion SCI was administered at the T2 level. PHLC and SWIM interventions began on day 8 postinjury and lasted 25 days. Echocardiography and dobutamine stress echocardiography were performed before and after injury. Cardiac contractile indexes were assessed in vivo at study termination via a left ventricular pressure-volume conductance catheter. Stroke volume was reduced after SCI (91 µl in the NO-EX group vs. 188 µl in the CON group, P < 0.05) and was reversed at study termination in the PHLC (167 µl) but not SWIM (90 µl) group. Rates of contraction were reduced in NO-EX versus CON groups (6,079 vs. 9,225 mmHg, respectively, P < 0.05) and were unchanged by PHLC and SWIM training. Similarly, end-systolic elastance was reduced in the NO-EX versus CON groups (0.67 vs. 1.37 mmHg/µl, respectively, P < 0.05) and was unchanged by PHLC or SWIM training. Dobutamine infusion normalized all pressure indexes in each SCI group (all P < 0.05). In conclusion, PHLC improves flow-derived cardiac indexes, whereas SWIM training displayed no cardiobeneficial effect. Pressure-derived deficits were corrected only with dobutamine, suggesting that reduced ß-adrenergic stimulation is principally responsible for the impaired cardiac contractile function after SCI.NEW & NOTEWORTHY This is the first direct comparison between the cardiac changes elicited by active upper-limb or passive lower-limb exercise after spinal cord injury. Here, we demonstrate that lower-limb exercise positively influences flow-derived cardiac indexes, whereas upper-limb exercise does not. Furthermore, neither intervention corrects the cardiac contractile dysfunction associated with spinal cord injury.


Asunto(s)
Ciclismo , Miembro Posterior/irrigación sanguínea , Condicionamiento Físico Animal , Acondicionamiento Físico Humano , Traumatismos de la Médula Espinal/fisiopatología , Extremidad Superior/irrigación sanguínea , Animales , Presión Sanguínea/efectos de los fármacos , Ecocardiografía de Estrés , Humanos , Masculino , Contracción Miocárdica , Ratas , Ratas Wistar , Flujo Sanguíneo Regional/fisiología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Natación
16.
J Neurophysiol ; 111(9): 1920-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24523526

RESUMEN

There is very little consensus regarding the mechanisms underlying postural control. Whereas some theories suggest that posture is controlled at lower levels (i.e., brain stem and spinal cord), other theories have proposed that upright stance is controlled using higher centers, including the motor cortex. In the current investigation, we used corticomuscular coherence (CMC) to investigate the relationship between cortical and shank muscle activity during conditions of unrestricted and restricted postural sway. Participants were instructed to stand as still as possible in an apparatus that allowed the center of mass to move freely ("Unlocked") or to be stabilized ("Locked") without subject awareness. EEG (Cz) and electromyography (soleus and lateral/medial gastrocnemii) were collected and used to estimate CMC over the Unlocked and Locked periods. Confirming our previous results, increases in center of pressure (COP) displacements were observed in 9 of 12 participants in the Locked compared with Unlocked condition. Across these 9 participants, CMC was low or absent in both the Unlocked and Locked conditions. The results from the current study suggest that this increase is not associated with an increase in the relationship between cortical and shank muscle activities. Rather, it may be that increases in COP displacement with locking are mediated by subcortical structures as a means of increasing sway to provide the central nervous system with a critical level of sensory information.


Asunto(s)
Corteza Motora/fisiología , Movimiento , Equilibrio Postural , Adulto , Femenino , Humanos , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Restricción Física
17.
Nat Med ; 30(5): 1276-1283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769431

RESUMEN

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .


Asunto(s)
Brazo , Mano , Cuadriplejía , Traumatismos de la Médula Espinal , Humanos , Cuadriplejía/terapia , Cuadriplejía/fisiopatología , Masculino , Mano/fisiopatología , Femenino , Persona de Mediana Edad , Adulto , Brazo/fisiopatología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Estimulación de la Médula Espinal/métodos , Resultado del Tratamiento , Calidad de Vida , Estudios Prospectivos , Enfermedad Crónica , Anciano , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/efectos adversos
19.
Nat Protoc ; 18(2): 340-373, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36418397

RESUMEN

Neurological disorders, including spinal cord injury, result in hemodynamic instability due to the disruption of supraspinal projections to the sympathetic circuits located in the spinal cord. We recently developed a preclinical model that allows the identification of the topology and dynamics through which sympathetic circuits modulate hemodynamics, supporting the development of a neuroprosthetic baroreflex that precisely controls blood pressure in rats, monkeys and humans with spinal cord injuries. Here, we describe the continuous monitoring of arterial blood pressure and sympathetic nerve activity over several months in preclinical models of chronic neurological disorders using commercially available telemetry technologies, as well as optogenetic and neuronal tract-tracing procedures specifically adapted to the sympathetic circuitry. Using a blueprint to construct a negative-pressure chamber, the approach enables the reproduction, in rats, of well-controlled and reproducible episodes of hypotension-mimicking orthostatic challenges already used in humans. Blood pressure variations can thus be directly induced and linked to the molecular, functional and anatomical properties of specific neurons in the brainstem, spinal cord and ganglia. Each procedure can be completed in under 2 h, while the construction of the negative-pressure chamber requires up to 1 week. With training, individuals with a basic understanding of cardiovascular physiology, engineering or neuroscience can collect longitudinal recordings of hemodynamics and sympathetic nerve activity over several months.


Asunto(s)
Hemodinámica , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Hemodinámica/fisiología , Presión Sanguínea/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología
20.
Science ; 381(6664): 1338-1345, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733871

RESUMEN

Axon regeneration can be induced across anatomically complete spinal cord injury (SCI), but robust functional restoration has been elusive. Whether restoring neurological functions requires directed regeneration of axons from specific neuronal subpopulations to their natural target regions remains unclear. To address this question, we applied projection-specific and comparative single-nucleus RNA sequencing to identify neuronal subpopulations that restore walking after incomplete SCI. We show that chemoattracting and guiding the transected axons of these neurons to their natural target region led to substantial recovery of walking after complete SCI in mice, whereas regeneration of axons simply across the lesion had no effect. Thus, reestablishing the natural projections of characterized neurons forms an essential part of axon regeneration strategies aimed at restoring lost neurological functions.


Asunto(s)
Axones , Regeneración Nerviosa , Parálisis , Recuperación de la Función , Traumatismos de la Médula Espinal , Caminata , Animales , Ratones , Axones/fisiología , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Parálisis/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Conectoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA