Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0175923, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38112453

RESUMEN

The isolation and selection of yeast strains to improve the quality of the cachaça-Brazilian Spirit-have been studied in our research group. Our strategy considers Saccharomyces cerevisiae as the predominant species involved in sugarcane juice fermentation and the presence of different stressors (osmolarity, temperature, ethanol content, and competition with other microorganisms). It also considers producing balanced concentrations of volatile compounds (higher alcohols and acetate and/or ethyl esters), flocculation capacity, and ethanol production. Since the genetic bases behind these traits of interest are not fully established, the whole genome sequencing of 11 different Saccharomyces cerevisiae strains isolated and selected from different places was analyzed to identify the presence of a specific genetic variation common to cachaça yeast strains. We have identified 20,128 single-nucleotide variants shared by all genomes. Of these shared variants, 37 were new variants (being six missenses), and 4,451 were identified as missenses. We performed a detailed functional annotation (using enrichment analysis, protein-protein interaction network analysis, and database and in-depth literature searches) of these new and missense variants. Many genes carrying these variations were involved in the phenotypes of flocculation, tolerance to fermentative stresses, and production of volatile compounds and ethanol. These results demonstrate the existence of a genetic profile shared by the 11 strains under study that could be associated with the applied selective strategy. Thus, this study points out genes and variants that may be used as molecular markers for selecting strains well suited to the fermentation process, including genetic improvement by genome editing, ultimately producing high-quality beverages and adding value.IMPORTANCEThis work demonstrates the existence of new genetic markers related to different phenotypes used to select yeast strains and mutations in genes directly involved in producing flavoring compounds and ethanol, and others related to flocculation and stress resistance.


Asunto(s)
Perfil Genético , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentación , Etanol , Fenotipo , Genómica
2.
Biotechnol Lett ; 46(2): 201-211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280177

RESUMEN

OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.


Asunto(s)
Microbiota , Polisacáridos , Oligosacáridos/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Monosacáridos
3.
J Biol Chem ; 298(5): 101891, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378128

RESUMEN

Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-ß-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein-carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.


Asunto(s)
Dictyostelium , Carbohidratos/química , Cristalografía por Rayos X , Dictyostelium/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas , Ligandos , Polisacáridos/metabolismo
4.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37212882

RESUMEN

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Asunto(s)
Vías Biosintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomasa , Biocatálisis , Ingeniería Metabólica
5.
J Biol Chem ; 296: 100385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556371

RESUMEN

Glycoside hydrolases (GHs) are involved in the degradation of a wide diversity of carbohydrates and present several biotechnological applications. Many GH families are composed of enzymes with a single well-defined specificity. In contrast, enzymes from the GH16 family can act on a range of different polysaccharides, including ß-glucans and galactans. SCLam, a GH16 member derived from a soil metagenome, an endo-ß-1,3(4)-glucanase (EC 3.2.1.6), can cleave both ß-1,3 and ß-1,4 glycosidic bonds in glucans, such as laminarin, barley ß-glucan, and cello-oligosaccharides. A similar cleavage pattern was previously reported for other GH16 family members. However, the molecular mechanisms for this dual cleavage activity on (1,3)- and (1,4)-ß-D-glycosidic bonds by laminarinases have not been elucidated. In this sense, we determined the X-ray structure of a presumably inactive form of SCLam cocrystallized with different oligosaccharides. The solved structures revealed general bound products that are formed owing to residual activities of hydrolysis and transglycosylation. Biochemical and biophysical analyses and molecular dynamics simulations help to rationalize differences in activity toward different substrates. Our results depicted a bulky aromatic residue near the catalytic site critical to select the preferable configuration of glycosidic bonds in the binding cleft. Altogether, these data contribute to understanding the structural basis of recognition and hydrolysis of ß-1,3 and ß-1,4 glycosidic linkages of the laminarinase enzyme class, which is valuable for future studies on the GH16 family members and applications related to biomass conversion into feedstocks and bioproducts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasas/metabolismo , Glucanos/metabolismo , Proteínas Bacterianas/química , Secuencia de Carbohidratos , Dominio Catalítico , Celulasas/química , Cristalografía por Rayos X/métodos , Glucanos/clasificación , Glicósidos/química , Glicósidos/metabolismo , Hidrólisis , Simulación de Dinámica Molecular , Microbiología del Suelo , Especificidad por Sustrato
6.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35352150

RESUMEN

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Asunto(s)
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Suelo
7.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32813063

RESUMEN

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Asunto(s)
Arabinosa , Glicósido Hidrolasas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Sordariales , Especificidad por Sustrato
8.
World J Microbiol Biotechnol ; 36(11): 166, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000321

RESUMEN

The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.


Asunto(s)
Biomasa , Lignina/metabolismo , Ácidos Carboxílicos/metabolismo , Fermentación , Lacasa/metabolismo , Peroxidasas/metabolismo , Superóxido Dismutasa/metabolismo
9.
Curr Microbiol ; 75(12): 1609-1618, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30209570

RESUMEN

The evolution of the symbiotic association with microbes allowed termites to decompose ingested lignocellulose from plant-derived substrates, including herbivore dung and soil humus. Representatives of the Syntermitinae (Termitidae) range in their feeding habits from wood and litter-feeding to humus-feeding species. However, only limited information is available about their feeding ecology and associated microbial communities. Here we conducted a study of the microbial communities associated to the termite Procornitermes araujoi using Illumina sequencing of the 16S and ITS rRNA genes. This species has been previously included in different feeding guilds. However, most aspects of its feeding ecology are unknown, especially those associated to its symbiotic microbiota. Our results showed that the microbial communities of termite guts and nest substrates of P. araujoi differed significantly for bacteria and fungi. Firmicutes dominated the bacterial gut community of both workers and soldiers, whereas Actinobacteria was found in higher prevalence in the nest walls. Sordariomycetes was the most abundant fungal class in both gut and nest samples and distinguish P. araujoi from the grass/litter feeding Cornitermes cumulans. Our results also showed that diversity of gut bacteria were higher in P. araujoi and Silvestritermes euamignathus than in the grass/litter feeders (C. cumulans and Syntermes dirus), that could indicate an adaptation of the microbial community of polyphagous termites to the higher complexity of their diets.


Asunto(s)
Isópteros/microbiología , Microbiota , Actinobacteria/aislamiento & purificación , Animales , Ascomicetos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Microbioma Gastrointestinal , Microbiota/genética , Tipificación Molecular , Poaceae , Suelo
10.
J Biol Chem ; 291(45): 23734-23743, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621314

RESUMEN

Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked ß1,3-ß1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical ß-sandwich fold comprising two ß-sheets. The planar ligand binding site, observed in a parallel orientation with the ß-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.


Asunto(s)
Bacterias/enzimología , Celulasa/metabolismo , Metagenoma , Saccharum/microbiología , Microbiología del Suelo , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Celulasa/química , Celulasa/genética , Celulosa/metabolismo , Cristalografía por Rayos X , Glucanos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oligosacáridos/metabolismo , Conformación Proteica , Termodinámica , Xilanos/metabolismo
11.
Mol Microbiol ; 102(4): 642-671, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27538790

RESUMEN

The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/metabolismo , Femenino , Proteínas Fúngicas/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Presión Osmótica/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sirolimus/farmacología , Esporas Fúngicas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Virulencia
12.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 395-403, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28088615

RESUMEN

The cellulases from Glycoside Hydrolyses family 12 (GH12) play an important role in cellulose degradation and plant cell wall deconstruction being widely used in a number of bioindustrial processes. Aiming to contribute toward better comprehension of these class of the enzymes, here we describe a high-yield secretion of a endoglucanase GH12 from Aspegillus terreus (AtGH12), which was cloned and expressed in Aspergillus nidulans strain A773. The purified protein was used for complete biochemical and functional characterization. The optimal temperature and pH of the enzyme were 55°C and 5.0 respectively, which has high activity against ß-glucan and xyloglucan and also is active toward glucomannan and CMC. The enzyme retained activity up to 60°C. AtGH12 is strongly inhibited by Cu2+, Fe2+, Cd2+, Mn2+, Ca2+, Zn2+ and EDTA, whereas K+, Tween, Cs+, DMSO, Triton X-100 and Mg2+ enhanced the enzyme activity. Furthermore, SAXS data reveal that the enzyme has a globular shape and CD analysis demonstrated a prevalence of a ß-strand structure corroborating with typical ß-sheets fold commonly found for other endoglucanases from GH12 family.


Asunto(s)
Aspergillus , Celulasa , Clonación Molecular , Proteínas Fúngicas , Expresión Génica , Aspergillus/enzimología , Aspergillus/genética , Celulasa/biosíntesis , Celulasa/química , Celulasa/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Recombinantes
13.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1758-1769, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28890404

RESUMEN

Carbohydrate-Active Enzymes are key enzymes for biomass-to-bioproducts conversion. α-l-Arabinofuranosidases that belong to the Glycoside Hydrolase family 62 (GH62) have important applications in biofuel production from plant biomass by hydrolyzing arabinoxylans, found in both the primary and secondary cell walls of plants. In this work, we identified a GH62 α-l-arabinofuranosidase (AnAbf62Awt) that was highly secreted when Aspergillus nidulans was cultivated on sugarcane bagasse. The gene AN7908 was cloned and transformed in A. nidulans for homologous production of AnAbf62Awt, and we confirmed that the enzyme is N-glycosylated at asparagine 83 by mass spectrometry analysis. The enzyme was also expressed in Escherichia coli and the studies of circular dichroism showed that the melting temperature and structural profile of AnAbf62Awt and the non-glycosylated enzyme from E. coli (AnAbf62Adeglyc) were highly similar. In addition, the designed glycomutant AnAbf62AN83Q presented similar patterns of secretion and activity to the AnAbf62Awt, indicating that the N-glycan does not influence the properties of this enzyme. The crystallographic structure of AnAbf62Adeglyc was obtained and the 1.7Å resolution model showed a five-bladed ß-propeller fold, which is conserved in family GH62. Mutants AnAbf62AY312F and AnAbf62AY312S showed that Y312 was an important substrate-binding residue. Molecular dynamics simulations indicated that the loop containing Y312 could access different conformations separated by moderately low energy barriers. One of these conformations, comprising a local minimum, is responsible for placing Y312 in the vicinity of the arabinose glycosidic bond, and thus, may be important for catalytic efficiency.


Asunto(s)
Aspergillus nidulans/enzimología , Celulosa/farmacología , Glicósido Hidrolasas/química , Aspergillus nidulans/crecimiento & desarrollo , Cristalografía , Glicósido Hidrolasas/fisiología , Glicosilación , Simulación de Dinámica Molecular
14.
Extremophiles ; 21(4): 775-788, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28500387

RESUMEN

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.


Asunto(s)
Adaptación Fisiológica , Extremófilos/fisiología , Thermus/fisiología , Calor , Espectrometría de Masas , Metabolómica , Proteómica , Transcriptoma
15.
Appl Microbiol Biotechnol ; 101(7): 2893-2903, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28013403

RESUMEN

Xyloglucan is the most abundant hemicellulose in primary walls of spermatophytes except for grasses. Xyloglucan-degrading enzymes are important in lignocellulosic biomass hydrolysis because they remove xyloglucan, which is abundant in monocot-derived biomass. Fungal genomes encode numerous xyloglucanase genes, belonging to at least six glycoside hydrolase (GH) families. GH74 endo-xyloglucanases cleave xyloglucan backbones with unsubstituted glucose at the -1 subsite or prefer xylosyl-substituted residues in the -1 subsite. In this work, 137 GH74-related genes were detected by examining 293 Eurotiomycete genomes and Ascomycete fungi contained one or no GH74 xyloglucanase gene per genome. Another interesting feature is that the triad of tryptophan residues along the catalytic cleft was found to be widely conserved among Ascomycetes. The GH74 from Aspergillus fumigatus (AfXEG74) was chosen as an example to conduct comprehensive biochemical studies to determine the catalytic mechanism. AfXEG74 has no CBM and cleaves the xyloglucan backbone between the unsubstituted glucose and xylose-substituted glucose at specific positions, along the XX motif when linked to regions deprived of galactosyl branches. It resembles an endo-processive activity, which after initial random hydrolysis releases xyloglucan-oligosaccharides as major reaction products. This work provides insights on phylogenetic diversity and catalytic mechanism of GH74 xyloglucanases from Ascomycete fungi.


Asunto(s)
Aspergillus fumigatus/enzimología , Genoma Fúngico , Glucanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Xilanos/metabolismo , Ascomicetos/enzimología , Ascomicetos/genética , Aspergillus fumigatus/genética , Dominio Catalítico/genética , Glicósido Hidrolasas/genética , Glicósidos/metabolismo , Hidrólisis , Filogenia , Especificidad por Sustrato
16.
Biotechnol Lett ; 37(7): 1455-62, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25801671

RESUMEN

OBJECTIVES: The use of endo-arabinanase from Bacillus licheniformis (ABNase) for sugarcane saccharification has been evaluated by enzyme immobilization and commercial cocktail supplement with the immobilized heterologous protein. RESULTS: Biochemical characterization of the purified ABNase showed that the catalytic activity was strongly inhibited by 5 mM Cu(2+), Zn(2+) or Fe(3+). The optimum pH and temperature for activity were 5.5-6.5 and 35-40 °C, respectively. The enzyme stability increased 128-fold when immobilized with glyoxyl agarose, and the hydrolysis of pretreated sugar cane biomass increased by 15 % when a commercial enzyme cocktail was supplemented with immobilized ABNase. CONCLUSION: Pectin hydrolysis by recombinant ABNase plays a role in the effective application of enzymatic cocktails for biomass saccharification.


Asunto(s)
Bacillus/enzimología , Biomasa , Reactores Biológicos , Enzimas Inmovilizadas/metabolismo , Glicósido Hidrolasas/metabolismo , Bacillus/genética , Celulosa , Estabilidad de Enzimas , Enzimas Inmovilizadas/genética , Glicósido Hidrolasas/genética , Especificidad por Sustrato
17.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140963, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690538

RESUMEN

Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat ß-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley ß-glucan, therefore displaying multi-functionality. For oat ß-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 µM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.


Asunto(s)
Celulasa , Celulasas , Celulasa/química , Anaerobiosis , Hongos
18.
Enzyme Microb Technol ; 180: 110498, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182429

RESUMEN

Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/ß-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67 Å, exhibits a canonical α/ß-hydrolase fold formed by eight ß-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70 °C. Furthermore, HtDLH maintains more than 50 % of its activity even after incubation at 90 °C for 16 h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.


Asunto(s)
Hidrolasas de Éster Carboxílico , Estabilidad de Enzimas , Especificidad por Sustrato , Cristalografía por Rayos X , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Ésteres/metabolismo , Ésteres/química , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Concentración de Iones de Hidrógeno , Cinética , Hidrólisis , Dominio Catalítico , Temperatura
19.
Sci Total Environ ; 949: 174876, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067601

RESUMEN

Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.


Asunto(s)
Biodegradación Ambiental , Microbiota , Plásticos , Plásticos/metabolismo , Microbiología del Suelo , Tereftalatos Polietilenos/metabolismo , Contaminantes del Suelo/metabolismo , Polímeros/metabolismo , Bacterias/metabolismo , Bacterias/genética , Plásticos Biodegradables/metabolismo , Consorcios Microbianos , Pseudomonas putida/metabolismo , Pseudomonas putida/genética
20.
Biotechnol Biofuels Bioprod ; 16(1): 5, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624471

RESUMEN

BACKGROUND: Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS: Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS: The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA