RESUMEN
Lipid nanoparticles (LNPs) are a potent delivery technology that have made it possible for the recent clinical breakthroughs in mRNA therapeutics and vaccines. A key challenge to the broader implementation of mRNA therapeutics and vaccines is the development of technology to produce precisely defined LNP formulations, with throughput that can scale from discovery to commercial manufacturing and meet the stringent manufacturing standards of the pharmaceutical industry. To address these challenges, we have developed a microfluidic chip that incorporates 1×, 10×, or 256× LNP-generating units that achieve scalable production rates of up to 17 L/h of precisely defined LNPs. Using these chips, we demonstrate that LNP physical properties and potency in vivo are unchanged as throughput is scaled. Our chips are fabricated out of silicon and glass substrates, which have excellent solvent compatibility, compatibility with pharmaceutical manufacturing, and can be fully reset and reused. SARS-CoV-2 mRNA-LNP vaccines formulated by our chips triggered potent antibody responses in a preclinical study. These results demonstrate the feasibility of directly translating microfluidic-generated LNPs to the scale necessary for commercial production.
Asunto(s)
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Liposomas , ARN Mensajero/genéticaRESUMEN
Toward the goal of increasing the throughput of high-resolution mass characterization of intact antibodies, we developed a RapidFire-mass spectrometry (MS) assay using electrospray ionization. We achieved unprecedented screening throughput as fast as 15 s/sample, which is an order of magnitude improvement over conventional liquid chromatography (LC)-MS approaches. The screening enabled intact mass determination as accurate as 7 ppm with baseline resolution at the glycoform level for intact antibodies. We utilized this assay to characterize and perform relative quantitation of antibody species from 248 samples of 62 different cell line clones at four time points in 2 h using RapidFire-time-of-flight MS screening. The screening enabled selection of clones with the highest purity of bispecific antibody production and the results significantly correlated with conventional LC-MS results. In addition, analyzing antibodies from a complex plasma sample using affinity-RapidFire-MS was also demonstrated and qualified. In summary, the platform affords high-throughput analyses of antibodies, including bispecific antibodies and potential mispaired side products, in cell culture media, or other complex matrices.
Asunto(s)
Anticuerpos Biespecíficos/sangre , Anticuerpos/sangre , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Anticuerpos/aislamiento & purificación , Anticuerpos Biespecíficos/aislamiento & purificación , Línea Celular , Cromatografía Liquida/métodos , HumanosRESUMEN
Proteases are critical proteins involved in cleaving substrates that may impact biological pathways, cellular processes, or disease progression. In the biopharmaceutical industry, modulating the levels of protease activity is an important strategy for mitigating many types of diseases. While a variety of analytical tools exist for characterizing substrate cleavages, in vitro functional screening for antibody inhibitors of protease activity using physiologically relevant intact protein substrates remains challenging. In addition, detecting such large protein substrates with high heterogeneity using high-throughput mass spectrometry screening has rarely been reported in the literature with concerns for assay robustness and sensitivity. In this study, we established a peptide-based in vitro functional screening assay for antibody inhibitors of mouse bone morphogenic protein 1 (mBMP1) metalloprotease using a heterogeneous recombinant 66-kDa mouse Procollagen I alpha 1 chain (mProcollagen) substrate. We compared several analytical tools including capillary gel electrophoresis Western blot (CE-Western blot), as well as both intact protein and peptide-based mass spectrometry (MS) to quantitate the mBMP1 proteolytic activity and its inhibition by antibodies using this heterogeneous mProcollagen substrate. We concluded that the peptide-based mass spectrometry screening assay was the most suitable approach in terms of throughput, sensitivity, and assay robustness. We then optimized our mBMP1 proteolysis reaction after characterizing the enzyme kinetics using the peptide-based MS assay. This assay resulted in Z' values ranging from 0.6 to 0.8 from the screening campaign. Among over 1200 antibodies screened, IC50 characterization was performed on the top candidate hits, which showed partial or complete inhibitory activities against mBMP1.
Asunto(s)
Péptidos , Procolágeno , Animales , Espectrometría de Masas , Ratones , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Procolágeno/metabolismo , Proteínas/metabolismo , Proteolisis , Especificidad por SustratoRESUMEN
There are many pharmacokinetic challenges associated with administering protein therapeutics, including biotransformation via clipping, deamidation, isomerization, oxidation, etc. In the case of engineered multivalent tethered antibody formats, proteolysis or deconjugation at the fusion or conjugation site present further issues. Unlike degradations associated with antibody drug conjugates, such biotransformations of tethered antibody formats usually result in degraded products with large mass differences. These large differences can result in processing or mass spectrometry response bias among the resulting product species that can lead to inaccurate stability quantitation. Herein, we describe an assay strategy for characterizing and quantitating degradations accurately for multivalent antibodies by incorporating response bias corrections. For the multivalent tethered antibody molecules selected, an â¼30-80% difference in response, compared to the cleaved product, was observed. To correct for the response bias, selected tethered multivalent antibodies and an IgG antibody (representing the stable intact and the degraded product species, respectively) were spiked in serum at known ratios for analysis. Following affinity capture, we generated calibration curves (five-parameter logistic fit p < 0.05) by plotting the measured ratios of the MS ion responses against the known spiked-in ratios (CVs < 8% for calibration standards). The qualified calibration curve (accuracy within 8% and 2% for measuring degradations of 5% and 15% product, respectively) was then used, through interpolation, to determine stability profiles for the same multivalent tethered antibody formats from both in vitro serum and pharmacokinetic study samples.
Asunto(s)
Anticuerpos/análisis , Inmunoconjugados/análisis , Cromatografía Liquida , Espectrometría de MasasRESUMEN
Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 µg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method. Graphical Abstract á .
Asunto(s)
Inmunoconjugados/sangre , Espectrometría de Masas/métodos , Animales , Anticuerpos Monoclonales/sangre , Cromatografía Liquida/métodos , Haplorrinos , Humanos , Inmunoconjugados/química , RatasRESUMEN
The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the different scaffolds employed for cardiac tissue engineering, a myocardial matrix hydrogel has been shown to promote cardiogenesis in murine cardiac progenitor cells (mCPCs) in vitro. In this study, we investigated the influence of the hydrogel on Sca-1-like human fetal and adult CPCs (fCPCs and aCPCs) when encapsulated in three-dimensional (3D) material in vitro. fCPCs encapsulated in the myocardial matrix showed an increase in the gene expression level of cardiac markers GATA-4 and MLC2v and the vascular marker vascular endothelial growth factor receptor 2 (VEGFR2) after 4 days in culture, and a significant increase in GATA-4 up to 1 week. Increased gene expression levels of Nkx2.5, MEF2c, VEGFR2, and CD31 were also observed when aCPCs were cultured in the matrix compared to collagen. Cell survival was sustained in both hydrogels up to 1 week in culture with the myocardial matrix capable of enhancing the expression of the proliferation marker Ki-67 after 4 days in culture. When encapsulated CPCs were treated with H2O2, an improved survival of the cells cultured in the myocardial matrix was observed. Finally, we evaluated the use of the myocardial matrix as hydrogel for in vivo cell transplantation and demonstrated that the gelation properties of the hydrogel are not influenced by the cells. In summary, we showed that the myocardial matrix hydrogel promotes human CPC cardiogenic potential, proliferation, and survival and is a favorable hydrogel for 3D in vitro culture. Furthermore, we demonstrated the in vivo applicability of the matrix as a potential vehicle for cell transplantation.