Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Soc Trans ; 51(1): 57-70, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36629496

RESUMEN

The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.


Asunto(s)
Apoptosis , Receptores de Muerte Celular , Humanos
2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446056

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Asunto(s)
Neoplasias Colorrectales , Glucógeno Sintasa Quinasa 3 , Humanos , Animales , Ratones , Glucógeno Sintasa Quinasa 3/metabolismo , Granzimas/genética , Granzimas/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias Colorrectales/metabolismo , Linfocitos Infiltrantes de Tumor , Biopsia , Línea Celular Tumoral , Antígeno B7-H1
3.
bioRxiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257809

RESUMEN

Prostate cancer (PCa) is the leading cause death from cancer in men worldwide. Approximately 30% of castrate-resistant PCa's become refractory to therapy due to neuroendocrine differentiation (NED) that is present in <1% of androgen-sensitive tumors. First-in-class imipridone ONC201/TIC10 has shown clinical activity against midline gliomas, neuroendocrine tumors and PCa. We explored the question of whether NED promotes sensitivity to imipridones ONC201 and ONC206 by inducible overexpression of SOX2 and BRN2, well-known neuroendocrine drivers, in human PCa cell lines DU145 or LNCaP. Slight protection from ONC201 or ONC206 with SOX2 and BRN2 overexpression was observed in the inducible LNCaP cells but not in the DU145 cells. At 2 months, there was an apparent increase in CLpP expression in LNCaP SOX2-overexpressing cells but this did not confer enhanced sensitivity to ONC201. DU145 SOX2-overexpressing cells had a significantly reduced ONC201 sensitivity than DU145 control cells. The results support the idea that treatment of castrate-resistant prostate cancer by imipridones may not be significantly impacted by neuroendocrine differentiation as a therapy-resistance mechanism. The results support further testing of imipridones across subtypes of androgen-sensitive and castrate-resistant prostate cancer.

4.
Am J Cancer Res ; 14(9): 4523-4536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39417197

RESUMEN

KRAS mutations occur in ~40-50% of mCRC and are associated with aggressive disease that is refractory to anti-EGFR therapies. Pancreatic cancer harbors ~90% KRAS driver gene mutation frequency. Small molecules targeting KRAS G12C gained FDA approval for KRAS G12C-mutated NSCLC. ONC212, a fluorinated imipridone with nM anti-cancer activity has preclinical efficacy against pancreatic cancer and other malignancies. MRTX1133, identified as a noncovalent selective KRAS G12D inhibitor that suppresses G12D signaling by binding to the switch II pocket thereby inhibiting protein-protein interactions. We investigated cell viability, drug synergies, pERK suppression and cytokine, chemokine or growth factor alterations following treatment with 5-Fluorouracil (5-FU) or ONC212 plus MRTX1133 in 6 human CRC and 4 human pancreatic cancer cell lines. IC50 sensitivities ranged from 7 to 12 µM for 5-FU, 0.2-0.8 µM for ONC212, and > 100 nM to > 5,000 nM for MRTX1133 (G12D N = 4: LS513 > 100, HPAF-II > 1,000, SNUC2B > 5,000, PANC-1 > 5,000). For non-G12D, the range of IC50 for MRTX1133 was > 1,000 to > 5,000 nM for CRC lines with G12V, G13D, or WT KRAS (N = 7). Synergies between MRTX1133 plus 5-FU or ONC212 were observed regardless of KRAS G12D mutation with combination indices of < 0.5 indicating strong synergy. Observed synergies were greater with MRTX1133 plus ONC212 compared to MRTX1133 plus 5-FU. pERK was suppressed with mutant but not wild-type KRAS at nM MRTX1133 doses. Immunostimulatory profiles included reduction in IL8/CXCL8, MICA, Angiopoietin 2, VEGF and TNF-alpha and increase in IL-18/IL-1F4 with MRTX treatments and combinations. Our studies reveal preclinical activity of MRTX1133 alone or synergies when combined with 5-FU or ONC212 against mCRC and pancreatic cancer cells regardless of KRAS G12D mutation. The results suggest that KRAS G12V and KRAS G13D should be further considered in clinical trials including combination therapies involving MRTX1133 and 5-FU or ONC212.

5.
J Clin Invest ; 134(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007268

RESUMEN

Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.


Asunto(s)
Apoptosis , Neoplasias , Transducción de Señal , Proteína p53 Supresora de Tumor , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Apoptosis/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
6.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798357

RESUMEN

Inhibition of GSK-3 using small-molecule elraglusib has shown promising preclinical antitumor activity. Using in vitro systems, we found that elraglusib promotes immune cell-mediated tumor cell killing, enhances tumor cell pyroptosis, decreases tumor cell NF-κB-regulated survival protein expression, and increases immune cell effector molecule secretion. Using in vivo systems, we observed synergy between elraglusib and anti-PD-L1 in an immunocompetent murine model of colorectal cancer. Murine responders had more tumor-infiltrating T-cells, fewer tumor-infiltrating Tregs, lower tumorigenic circulating cytokine concentrations, and higher immunostimulatory circulating cytokine concentrations. To determine the clinical significance, we utilized human plasma samples from patients treated with elraglusib and correlated cytokine profiles with survival. Using paired tumor biopsies, we found that CD45+ tumor-infiltrating immune cells had lower expression of inhibitory immune checkpoints and higher expression of T-cell activation markers in post-elraglusib patient biopsies. These results introduce several immunomodulatory mechanisms of GSK-3 inhibition using elraglusib, providing a rationale for the clinical evaluation of elraglusib in combination with immunotherapy. Statement of significance: Pharmacologic inhibition of GSK-3 using elraglusib sensitizes tumor cells, activates immune cells for increased anti-tumor immunity, and synergizes with anti-PD-L1 immune checkpoint blockade. These results introduce novel biomarkers for correlations with response to therapy which could provide significant clinical utility and suggest that elraglusib, and other GSK-3 inhibitors, should be evaluated in combination with immune checkpoint blockade.

7.
Am J Clin Oncol ; 44(7): 374-382, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014842

RESUMEN

The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Andrógenos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Masculino , Terapia Molecular Dirigida/métodos
8.
Int J Oncol ; 20(5): 983-6, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11956593

RESUMEN

There are literally thousands of known agents with potential chemopreventive and antioxidant activity; however, the expanding list of natural and synthetic compounds makes it difficult to test every agent in the widely accepted 2-year animal bioassay and human clinical trials. Therefore, short-term screening assays are needed to sort out the most efficacious compounds for long-term animal studies. In the present study, the identification of chemopreventive agents with efficacious antioxidant potential was explored with a Cu2+-mediated Fenton-type reaction, coupled with oxidative DNA lesion detection by 32P-postlabeling. Several agents inhibited the formation of 8-oxo-2'-deoxyguanosine (8-oxodG), a benchmark oxidative DNA lesion, but ellagic acid, a polyphenol found in berries, offered maximal (>80%) inhibition of 8-oxodG formation. However, a well-known tea polyphenol, epigallocatechin gallate, along with silymarin and D,L-sulforaphane, exhibited a pro-oxidant effect, with 50-70% increase in 8-oxodG induction. In general, our results agree with the reported antioxidant - pro-oxidant activities of the compounds, rendering this in vitro screening assay to be useful in determining the antioxidant potential of compounds rapidly and cost-effectively.


Asunto(s)
Antioxidantes/farmacología , Cobre/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Depuradores de Radicales Libres/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Antineoplásicos Fitogénicos/farmacología , Bioensayo , Catequina/análogos & derivados , Catequina/farmacología , Daño del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Elágico/farmacología , Humanos , Oxígeno/metabolismo , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA