Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exerc Rehabil ; 19(1): 75-84, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36910680

RESUMEN

Oxidative stress has been suggested to play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). This study aimed to investigate a link between malondialdehyde (MDA) levels, pulmonary function, and cardiac autonomic control in patients with COPD. Plasma levels of MDA, heart rate variability, and pulmonary function were measured in 50 clinically stable COPD patients and 50 normal male controls. COPD patients exhibited lower means of the standard deviations of all normal to normal (NN) intervals (SDNN), the square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD), and high frequency (HF). Nevertheless, they presented greater low frequency (LF) and low frequency/high frequency ratio (LF/HF ratio) in supine and head-up tilt positions than controls (P<0.001). More-over, a negative correlation between MDA levels with SDNN (P<0.001) and a positive correlation with LF (P<0.01) and LF/HF ratio (P<0.05) were observed in both positions. In COPD patients, plasma MDA levels were 2.3 times greater than controls (4.33±2.03 µM vs. 1.89±0.39 µM, P<0.001), and they were inversely correlated with forced vital capacity, forced expiratory volume in 1 sec, midexpiratory flow, and peak expiratory flow (P<0.001). Our findings suggest a potential role for oxidative stress in impaired cardiac autonomic control and clinical relevance of plasma MDA levels as a predictor of severity of COPD in COPD patients.

2.
J Exerc Rehabil ; 19(2): 114-125, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37163180

RESUMEN

The objective of this study was to investigate the effects of the combination of elastic band resistance exercise (EBRE) with modified Thai yoga on the alleviation of blood glucose and oxidative stress in type 2 diabetes mellitus (T2DM). Forty-two patients with T2DM were enrolled and allocated to an exercise or control group (n=21/group). The exercise group participated in EBRE combination with modified Thai yoga for 40 min, 5 days/wk, for 12 consecutive weeks. Blood glucose, oxidative stress markers, antioxidants, pulmonary function, respiratory muscle strength, and airway inflammation were measured before and after the 12 weeks. The results showed that the exercise group had a significant reduction in fasting blood glucose and glycated hemoglobin. Moreover, T2DM patients in the exercise group showed a significant reduction in plasma malondialdehyde, while superoxide dismutase and catalase were significantly increased. The exercise group also observed a significant improvement in pulmonary function; forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow, and forced midexpiratory flow as well as respiratory muscle strength. Interestingly, the combination of EBRE with modified Thai yoga markedly improved airway inflammation through the reduction in fractional exhaled nitric oxide. In conclusion, these findings suggest that the combination of EBRE with modified Thai yoga improves blood glucose, oxidative stress, antioxidants, pulmonary function, respiratory muscle strength, and airway inflammation in T2DM patients. Hence, it could be considered as a possible exercise program for T2DM patients.

3.
F1000Res ; 12: 846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434672

RESUMEN

Background: One of the most common neurodegenerative diseases is Parkinson's disease (PD); PD is characterized by a reduction of neurons containing dopamine in the substantia nigra (SN), which leads to a lack of dopamine (DA) in nigrostriatal pathways, resulting in motor function disorders. Oxidative stress is considered as one of the etiologies involved in dopaminergic neuronal loss. Thus, we aimed to investigate the neuroprotective effects of pinostrobin (PB), a bioflavonoid extracted from Boesenbergia rotunda with antioxidative activity in PD. Methods: Rats were treated with 40 mg/kg of PB for seven consecutive days before and after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. After completing the experiment, the brains including SN and striatum were used for histological studies and biochemical assays. Results: PB treatment demonstrated a reduction of free radicals in the SN as indicated by significantly decreased MDA levels, whereas the antioxidative enzymes (SOD and GSH) were significantly increased. Furthermore, PB treatment significantly increased glial cell line-derived neurotrophic factor (GDNF) immunolabelling which has neurotrophic and neuroprotective effects on the survival of dopaminergic neurons. Furthermore, PB treatment was shown to protect CA1 and CA3 neurons in the hippocampus and dopaminergic neurons in the SN. DA levels in the SN were increased after PB treatment, leading to the improvement of motor function of PD rats. Conclusions: These results imply that PB prevents MPTP-induced neurotoxicity via its antioxidant activities and increases GDNF levels, which may contribute to the therapeutic strategy for PD.


Asunto(s)
Flavanonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratas , Antioxidantes/metabolismo , Dopamina , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Regulación hacia Arriba
4.
Heliyon ; 9(12): e22545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107289

RESUMEN

Alzheimer's disease is characterized by progressive memory loss caused from alterations in the central cholinergic system. While existing medications often have adverse effects, traditional use of Tiliacora triandra in Thailand shows its potential as a revitalizing neurotonic agent. This study explores the impact of T. triandra leaf extract on cognitive behaviors, neuronal density, and oxidative stress in male rats with scopolamine-induced cognitive impairment. Experimental groups composed of a control, vehicle, positive control meditation, and T. triandra extract-treated groups (100, 200, and 400 mg/kg BW) over 14 days, with scopolamine administration (i.p.) between days 8 and 14. Results showed significant enhancements in the discrimination ratio and spontaneous alteration behavior percentage during novel object recognition (NORT) and Y-maze tests for scopolamine-administered rats treated with T. triandra extract or donepezil. In contrast, open field test (OFT)-assessed spontaneous locomotor activity displayed no significant difference. Notably, acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels reduced significantly in scopolamine-treated rats with T. triandra extract or the positive control. Moreover, neuronal density in the hippocampal CA3 region, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities increased significantly. However, catalase (CAT) activity exhibited no significant difference. In conclusion, T. triandra leaf extract shows promise in mitigating scopolamine-induced memory deficits, potentially attributed to increased neuronal density, inhibited AChE activity, reduced MDA levels, and enhanced antioxidant activities. This extract has potential as a therapeutic agent for Alzheimer's disease-associated memory impairment.

5.
Artículo en Inglés | MEDLINE | ID: mdl-21792372

RESUMEN

Oxidative stress has been reported to induce cognitive impairment in Parkinson's disease. This paper aimed to determine the effect of quercetin, a substance possessing antioxidant activity, on the cognitive function in a rat model of Parkinson's disease. Male Wistar rats, weighing 200-250 g, were orally given quercetin at doses of 100, 200, 300 mg/kg BW once daily for a period of 14 days before and 14 days after the unilateral lesion of right substantia nigra induced by 6-hydroxydopamine (6-OHDA). Their spatial memory was assessed at 7 and 14 days of treatment and neuron density was determined, malondialdehyde (MDA) level, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were evaluated at the end of the experiment. In addition, the activity of acetylcholinesterase (AChE) was also measured. It was found that all doses of quercetin enhanced spatial memory. Therefore, it is suggested that the cognitive-enhancing effect of quercetin occurs partly because of decreased oxidative damage resulting in increased neuron density.

6.
Biomed Rep ; 16(4): 30, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35251617

RESUMEN

Injury to the peripheral nerve may lead to deficits in nerve function. An increase in the levels of free radicals plays a role in inhibition of nerve regeneration following damage. The aim of this study was to investigate the effects of lotus essential oil (LEO) on neurite outgrowth in vitro and nerve regeneration in vivo in a rat model of sciatic nerve crush injury. Gas chromatography-mass spectrometry analysis showed that the principal constituent of LEO was palmitic acid ethyl ester (25.12%). The radical scavenging activity of LEO was evaluated using the DPPH method, and was determined to be IC50=29.01±2.93 µg/ml. LEO-treated sensory neurons exhibited increased neurite outgrowth and upregulated levels of phospho-ERK. Sensory and motor functions were improved in rats treated with 50 and 100 mg/kg LEO, and this was accompanied by an increase in the number of neurons in the dorsal root ganglia, as well as an increase in the nerve axon diameters following nerve injury. Taken together, these results suggests that LEO may serve as a novel pharmacological option for the management of peripheral nerve injury.

7.
Heliyon ; 8(2): e08881, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198760

RESUMEN

The aim of this study was to evaluate whether an aqueous extract of Azadirachta indica A. Juss. (A. indica) flower had anxiolytic and antidepressant-like effects in the stressed rats. Male Wistar rats were randomly allocated to one of two experimental groups: control or stress. The stress groups were received restraint stress for 3 h. The stressed rats were administered a vehicle, diazepam, fluoxetine, and A. indica at doses of 250, 500, and 1000 mg/kg BW for 30 days. The elevated plus-maze test (EPMT), the forced swimming test (FST), and the open field test (OFT) were used to assess anxiolytic and antidepressant-like behaviors. In the EPMT, the percentage of the number of open arm entries and the duration spent in open arms were measured. These measurements were considerably enhanced in the stressed rats treated with diazepam and A. indica flower extract at a dose of 500 mg/kg BW. Furthermore, the stressed rats given fluoxetine and A. indica flower extract at all doses employed in this study showed a significant reduction in the amount of time the rats were immobilized in the FST. However, there was no significant difference in spontaneous locomotor activity between any of the groups. Additionally, the stressed rats treated with either positive control medications or A. indica flower extract exhibited significantly higher brain dopamine (DA) and serotonin (5-HT) levels, but lower blood cortisol levels as compared to the stressed rats treated with vehicle. Moreover, A. indica flower extract had no harmful effect on the stressed rats' liver tissue.

8.
Biomed Res Int ; 2020: 4259316, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596307

RESUMEN

The systemic administration of lipopolysaccharide (LPS) has been recognized to induce neuroinflammation which plays a significant role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study, we aimed to determine the protective effect of Zingiber cassumunar (Z. cassumunar) or Phlai (in Thai) against LPS-induced neuronal cell loss and the upregulation of glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. Adult male Wistar rats were orally administered with Z. cassumunar extract at various doses (50, 100, and 200 mg/kg body weight) for 14 days before a single injection of LPS (250 µg/kg/i.p.). The results indicated that LPS-treated animals exhibited neuronal cell loss and the activation of astrocytes and also increased proinflammatory cytokine interleukin- (IL-) 1ß in the hippocampus. Pretreatment with Z. cassumunar markedly reduced neuronal cell loss in the hippocampus. In addition, Z. cassumunar extract at a dose of 200 mg/kg BW significantly suppressed the inflammatory response by reducing the expression of GFAP and IL-1ß in the hippocampus. Therefore, the results suggested that Z. cassumunar extract might be valuable as a neuroprotective agent in neuroinflammation-induced brain damage. However, further investigations are essential to validate the possible active ingredients and mechanisms of its neuroprotective effect.


Asunto(s)
Astrocitos/efectos de los fármacos , Encefalitis/fisiopatología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Zingiber officinale , Animales , Encefalitis/inducido químicamente , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratas Wistar
9.
Exp Ther Med ; 17(1): 541-550, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30651834

RESUMEN

Chronic hyperglycemia causes nerves to be more susceptible to compression, which often occurs as a result of hyperglycemia-induced oxidative stress. Oxidative stress impairs nerve function and delays nerve recovery. Azadirachta indica, a herb from Thailand, possesses antioxidant and antidiabetic properties. The aim of the present study was therefore to investigate the effect of A. indica flower extract on the functional recovery of a sciatic nerve crush injury in rat models of diabetes mellitus (DM). Male Wistar rats were randomly assigned into seven groups including the control rats, rats with DM subjected to sham surgery and treated with vehicle, and rats with DM subjected to the crush surgery and treated with vehicle or A. indica flower extract at a dose of 250, 500 or 750 mg/kg animal body weight, or with vitamin C. DM was induced using a single intraperitoneal injection of streptozotocin (55 mg/kg animal body weight). Rats subjected to a sciatic nerve crush injury or sham surgery were orally treated with either vehicle, A. indica flower extract or vitamin C for 21 days. Functional recovery was assessed every 3 days using a walking track analysis, foot withdrawal reflex test and rotarod test. At the end of the study, the rats were sacrificed and their left sciatic nerves were harvested in order to determine malondialdehyde levels, superoxide dismutase activity and axon density. The treatment with A. indica flower extract significantly improved functional recovery, especially motor and sensory functions. The extract significantly decreased malondialdehyde levels, and increased superoxide dismutase activity and axon density. The results of the current study indicate that the mechanism underlying the enhanced functional recovery of the sciatic nerve following treatment with A. indica flower extract may be associated with an antioxidative effect. However, further studies are required to confirm the current results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA