Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 294(45): 16684-16697, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31543504

RESUMEN

Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.


Asunto(s)
Fagocitosis , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Actinas/metabolismo , Animales , Endosomas/metabolismo , Humanos , Inmunoglobulina G/inmunología , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Mycobacterium marinum/patogenicidad , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/genética , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de IgG/metabolismo , Transducción de Señal
2.
Hum Mol Genet ; 25(11): 2295-2313, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056978

RESUMEN

Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.


Asunto(s)
Riñón/metabolismo , Complejos Multiproteicos/genética , Monoéster Fosfórico Hidrolasas/genética , Enfermedades Renales Poliquísticas/genética , Serina-Treonina Quinasas TOR/genética , Animales , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/patología , Modelos Animales de Enfermedad , Elafina/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mutación de Línea Germinal , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
3.
Proc Natl Acad Sci U S A ; 107(51): 22231-6, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21127264

RESUMEN

Inositol polyphosphate 4-phosphatase-II (INPP4B) is a regulator of the phosphoinositide 3-kinase (PI3K) signaling pathway and is implicated as a tumor suppressor in epithelial carcinomas. INPP4B loss of heterozygosity (LOH) is detected in some human breast cancers; however, the expression of INPP4B protein in breast cancer subtypes and the normal breast is unknown. We report here that INPP4B is expressed in nonproliferative estrogen receptor (ER)-positive cells in the normal breast, and in ER-positive, but not negative, breast cancer cell lines. INPP4B knockdown in ER-positive breast cancer cells increased Akt activation, cell proliferation, and xenograft tumor growth. Conversely, reconstitution of INPP4B expression in ER-negative, INPP4B-null human breast cancer cells reduced Akt activation and anchorage-independent growth. INPP4B protein expression was frequently lost in primary human breast carcinomas, associated with high clinical grade and tumor size and loss of hormone receptors and was lost most commonly in aggressive basal-like breast carcinomas. INPP4B protein loss was also frequently observed in phosphatase and tensin homolog (PTEN)-null tumors. These studies provide evidence that INPP4B functions as a tumor suppressor by negatively regulating normal and malignant mammary epithelial cell proliferation through regulation of the PI3K/Akt signaling pathway, and that loss of INPP4B protein is a marker of aggressive basal-like breast carcinomas.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pérdida de Heterocigocidad , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética
4.
J Biol Chem ; 286(50): 43229-40, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002247

RESUMEN

Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.


Asunto(s)
Actinas/metabolismo , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Factores de Intercambio de Guanina Nucleótido/genética , Immunoblotting , Insulina/farmacología , Ratones , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
5.
J Biol Chem ; 286(34): 29758-70, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21712384

RESUMEN

Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Fibras de Estrés/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Seudópodos/genética , Seudópodos/metabolismo , Fibras de Estrés/genética
6.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33119550

RESUMEN

The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k-/- muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k-/- myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k-/- muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Enfermedades Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Noqueados , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mioblastos Esqueléticos/patología , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
7.
Nat Commun ; 12(1): 3140, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035258

RESUMEN

INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3ß lysosomal degradation and activation of Wnt/ß-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/ß-catenin therapies.


Asunto(s)
Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/genética , Endosomas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lisosomas/metabolismo , Ratones , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Proteómica , Tiazoles/farmacología , Tiazoles/uso terapéutico , Análisis de Matrices Tisulares , Vía de Señalización Wnt/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
8.
Mol Cell Biol ; 26(16): 6065-81, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880518

RESUMEN

Exogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane. Immunoprecipitated 72-5ptase from adipocytes hydrolyzed PtdIns(3,5)P2, forming PtdIns(3)P. Overexpression of the 72-5ptase was used to functionally dissect the role of endogenous PtdIns(3)P in GLUT4 translocation and/or plasma membrane insertion. In unstimulated adipocytes wild type, but not catalytically inactive, 72-5ptase, promoted GLUT4 translocation and insertion into the plasma membrane but not glucose uptake. Overexpression of FLAG-2xFYVE/Hrs, which binds and sequesters PtdIns(3)P, blocked 72-5ptase-induced GLUT4 translocation. Actin monomer binding, using latrunculin A treatment, also blocked 72-5ptase-stimulated GLUT4 translocation. 72-5ptase expression promoted GLUT4 trafficking via a Rab11-dependent pathway but not by Rab5-mediated endocytosis. Therefore, endogenous PtdIns(3)P at the plasma membrane promotes GLUT4 translocation.


Asunto(s)
Membrana Celular/enzimología , Transportador de Glucosa de Tipo 4/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Monoéster Fosfórico Hidrolasas/metabolismo , Células 3T3-L1 , Actinas/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Animales , Diferenciación Celular , Células Cultivadas , Expresión Génica , Hidrólisis/efectos de los fármacos , Inositol Polifosfato 5-Fosfatasas , Insulina/farmacología , Ratones , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo
9.
J Cell Biol ; 216(1): 247-263, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27998989

RESUMEN

Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e-/- embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e-/- ciliopathy phenotypes and "normalizes" Hedgehog signaling. INPP5E's phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e-/- cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.


Asunto(s)
Anomalías Múltiples/enzimología , Cerebelo/anomalías , Cilios/enzimología , Embrión de Mamíferos/enzimología , Anomalías del Ojo/enzimología , Enfermedades Renales Quísticas/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Retina/anomalías , Epitelio Pigmentado de la Retina/enzimología , Sistemas de Mensajero Secundario , Anomalías Múltiples/genética , Animales , Línea Celular , Cerebelo/enzimología , Modelos Animales de Enfermedad , Anomalías del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Renales Quísticas/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Retina/enzimología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Factores de Tiempo , Transfección , Proteína Gli2 con Dedos de Zinc
10.
Biochem J ; 375(Pt 2): 433-40, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12877659

RESUMEN

Members of the SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated SNAREs syntaxin 1 and SNAP25, and the vesicle-associated SNARE VAMP2, is necessary for synaptic vesicle exocytosis. Several accessory factors have been described that associate with the synaptic SNAREs and modulate core complex assembly or mediate Ca2+ regulation. One such factor, Snapin, has been reported to be a brain-specific protein that interacts with SNAP25, and regulates association of the putative Ca2+-sensor synaptotagmin with the synaptic SNARE complex [Ilardi, Mochida and Sheng (1999) Nat. Neurosci. 2, 119-124]. Here we demonstrate that Snapin is expressed ubiquitously in neuronal and non-neuronal cells. Furthermore, using protein-protein-interaction assays we show that Snapin interacts with SNAP23, the widely expressed homologue of SNAP25, and that the predicted C-terminal helical domain of Snapin contains the SNAP23-binding site. Subcellular localization experiments revealed that Snapin is a soluble protein that exists in both cytosolic and peripheral membrane-bound pools in adipocytes. Moreover, association of Snapin with the plasma membrane was detected in cells overexpressing a Snapin-green fluorescent protein fusion protein. Finally, we show that Snapin is able to form a ternary complex with SNAP23 and syntaxin 4, suggesting that it is a component of non-neuronal SNARE complexes. An important implication of our results is that Snapin is likely to perform a general role in SNARE-mediated vesicle fusion events in non-neuronal cells in addition to its participation in Ca2+-regulated neurosecretion.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Células 3T3-L1 , Animales , Sitios de Unión/genética , Northern Blotting , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal , Unión Proteica , Proteínas Qb-SNARE , Proteínas Qc-SNARE , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Sintaxina 1
11.
PLoS One ; 10(2): e0117665, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25695429

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/genética , Animales , Línea Celular , Femenino , Fibrosis , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos , Desarrollo de Músculos/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Mioblastos/citología , Mioblastos/metabolismo , Mioblastos/patología , Proteínas de Unión al ARN
12.
Cancer Res ; 73(16): 5066-79, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23801747

RESUMEN

It is now clear that progression from localized prostate cancer to incurable castrate-resistant prostate cancer (CRPC) is driven by continued androgen receptor (AR), signaling independently of androgen. Thus, there remains a strong rationale to suppress AR activity as the single most important therapeutic goal in CRPC treatment. Although the expression of ligand-independent AR splice variants confers resistance to AR-targeted therapy and progression to lethal castrate-resistant cancer, the molecular regulators of AR activity in CRPC remain unclear, in particular those pathways that potentiate the function of mutant AR in CRPC. Here, we identify FHL2 as a novel coactivator of ligand-independent AR variants that are important in CRPC. We show that the nuclear localization of FHL2 and coactivation of the AR is driven by calpain cleavage of the cytoskeletal protein filamin, a pathway that shows differential activation in prostate epithelial versus prostate cancer cell lines. We further identify a novel FHL2-AR-filamin transcription complex, revealing how deregulation of this axis promotes the constitutive, ligand-independent activation of AR variants, which are present in CRPC. Critically, the calpain-cleaved filamin fragment and FHL2 are present in the nucleus only in CRPC and not benign prostate tissue or localized prostate cancer. Thus, our work provides mechanistic insight into the enhanced AR activation, most notably of the recently identified AR variants, including AR-V7 that drives CRPC progression. Furthermore, our results identify the first disease-specific mechanism for deregulation of FHL2 nuclear localization during cancer progression. These results offer general import beyond prostate cancer, given that nuclear FHL2 is characteristic of other human cancers where oncogenic transcription factors that drive disease are activated like the AR in prostate cancer.


Asunto(s)
Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Células COS , Calpaína/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/patología , Filaminas/genética , Filaminas/metabolismo , Humanos , Ligandos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/patología , Activación Transcripcional
13.
J Biol Chem ; 279(41): 43027-34, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15292201

RESUMEN

Rab/Ypt GTPases play key roles in the regulation of vesicular trafficking. They perform most of their functions in a GTP-bound form by interacting with specific downstream effectors. The exocyst is a complex of eight polypeptides involved in constitutive secretion and functions as an effector for multiple Ras-related small GTPases, including the Rab protein Sec4p in yeast. In this study, we have examined the localization and function of the Sec15 exocyst subunit in mammalian cells. Overexpressed Sec15 associated with clusters of tubular/vesicular elements that were concentrated in the perinuclear region. The tubular/vesicular clusters were dispersed throughout the cytoplasm upon treatment with the microtubule-depolymerizing agent nocodazole and were accessible to endocytosed transferrin, but not exocytic cargo (vesicular stomatitis virus glycoprotein). Consistent with these observations, Sec15 colocalized selectively with the recycling endosome marker Rab11 and exhibited a GTP-dependent interaction with the Rab11 GTPase, but not with Rab4, Rab6, or Rab7. These findings provide the first evidence that the exocyst functions as a Rab effector complex in mammalian cells.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP rab/metabolismo , Animales , Transporte Biológico , Células CHO , Células COS , Línea Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cricetinae , Citoplasma/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Microscopía Electrónica , Microtúbulos/metabolismo , Nocodazol/farmacología , Péptidos/química , Plásmidos/metabolismo , Unión Proteica , Temperatura , Transfección , Transferrina/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/fisiología , Proteínas de Unión al GTP rab4/metabolismo , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA