Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 93(6): 755-768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38404168

RESUMEN

Species in one ecosystem can indirectly affect multiple biodiversity components and ecosystem functions of adjacent ecosystems. The magnitude of these cross-ecosystem effects depends on the attributes of the organisms involved in the interactions, including traits of the predator, prey and basal resource. However, it is unclear how predators with cross-ecosystem habitat interact with predators with single-ecosystem habitat to affect their shared ecosystem. Also, unknown is how such complex top-down effects may be mediated by the anti-predatory traits of prey and quality of the basal resource. We used the aquatic invertebrate food webs in tank bromeliads as a model system to investigate these questions. We manipulated the presence of a strictly aquatic predator (damselfly larvae) and a predator with both terrestrial and aquatic habitats (spider), and examined effects on survival of prey (detritivores grouped by anti-predator defence), detrital decomposition (of two plant species differing in litter quality), nitrogen flux and host plant growth. To evaluate the direct and indirect effects each predator type on multiple detritivore groups and ultimately on multiple ecosystem processes, we used piecewise structural equation models. For each response variable, we isolated the contribution of different detritivore groups to overall effects by comparing alternate model formulations. Alone, damselfly larvae and spiders each directly decreased survival of detritivores and caused multiple indirect negative effects on detritus decomposition, nutrient cycling and host plant growth. However, when predators co-occurred, the spider caused a negative non-consumptive effect on the damselfly larva, diminishing the net direct and indirect top-down effects on the aquatic detritivore community and ecosystem functioning. Both detritivore traits and detritus quality modulated the strength and mechanism of these trophic cascades. Predator interference was mediated by undefended or partially defended detritivores as detritivores with anti-predatory defences evaded consumption by damselfly larvae but not spiders. Predators and detritivores affected ecosystem decomposition and nutrient cycling only in the presence of high-quality detritus, as the low-quality detritus was consumed more by microbes than invertebrates. The complex responses of this system to predators from both recipient and adjacent ecosystems highlight the critical role of maintaining biodiversity components across multiple ecosystems.


As espécies em um ecossistema podem afetar indiretamente múltiplos componentes da biodiversidade e funções ecossistêmicas em ecossistemas adjacentes. A magnitude destes efeitos entre ecossistemas depende dos atributos dos organismos envolvidos nas interações, incluindo características do predador, da presa e do recurso basal. No entanto, não está claro como os predadores com habitat em múltiplos ecossistemas interagem com predadores de um ecossistema único, e como isso afeta o ecossistema partilhado entre eles. Além disso, não se sabe como esses efeitos complexos do tipo top­down podem ser mediados pelas características antipredatórias da presa e pela qualidade do recurso basal. Usamos as teias alimentares de invertebrados aquáticos de bromélias­tanque como um sistema modelo para investigar essas questões. Nós manipulamos a presença de um predador estritamente aquático (larvas de zigópteros) e um predador com habitats terrestre e aquático (aranha), e examinamos os efeitos na sobrevivência de presas (grupos de detritívoros com diferentes estratégias de defesa antipredatória), decomposição de detritos foliares (de duas espécies de plantas diferindo na qualidade foliar), fluxo de nitrogênio e crescimento da planta hospedeira. Para avaliar os efeitos diretos e indiretos de cada tipo de predador em múltiplos grupos de detritívoros e, finalmente, em múltiplos processos ecossistêmicos, utilizamos modelos de equações estruturais por partes (piecewiseSEM). Para cada variável resposta, isolamos a contribuição de diferentes grupos de detritívoros bem como seus efeitos globais, comparando modelos alternativos. Larvas de zigópteros e aranhas diminuíram diretamente a sobrevivência dos detritívoros e causaram múltiplos efeitos negativos indiretos na decomposição de detritos, na ciclagem de nutrientes e no crescimento da planta hospedeira. No entanto, quando os predadores coocorreram, a aranha causou um efeito negativo não consumível na larva de zigóptero, diminuindo os efeitos líquidos, diretos e indiretos, do tipo top­down na comunidade de detritívoros aquáticos e no funcionamento do ecossistema. Tanto os atributos antipredatórios dos detritívoros quanto a qualidade dos detritos modularam a força e o mecanismo dessas cascatas tróficas. A interferência do predador foi mediada por detritívoros indefesos ou com defesa parcial. Entretanto, os detritívoros com defesas antipredatórias escaparam do consumo por larvas de zigópteros, mas não por aranhas. Predadores e detritívoros afetaram a decomposição do ecossistema e a ciclagem de nutrientes apenas na presença de detritos de alta qualidade, uma vez que os detritos de baixa qualidade foram consumidos mais por micróbios do que por invertebrados. As respostas complexas deste sistema aos predadores tanto de ecossistemas receptores quanto adjacentes destacam o papel crítico da manutenção dos componentes da biodiversidade em múltiplos ecossistemas.


Asunto(s)
Cadena Alimentaria , Larva , Conducta Predatoria , Arañas , Animales , Larva/fisiología , Larva/crecimiento & desarrollo , Arañas/fisiología , Bromeliaceae/fisiología , Ecosistema , Invertebrados/fisiología
2.
Proc Biol Sci ; 289(1979): 20220938, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855607

RESUMEN

Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets. Improvements in policies and best practices around data management will hopefully limit future need for data rescue; these changes, however, do not apply retroactively. While rescuing data is not new, the term lacks formal definition, is often conflated with other terms (i.e. data reuse), and lacks general recommendations. Here, we outline seven key guidelines for effective rescue of historically collected and unmanaged datasets. We discuss prioritization of datasets to rescue, forming effective data rescue teams, preparing the data and associated metadata, and archiving and sharing the rescued materials. In an era of rapid environmental change, the best policy solutions will require evidence from both contemporary and historical sources. It is, therefore, imperative that we identify and preserve valuable, at-risk environmental data before they are lost to science.

3.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35243726

RESUMEN

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Cambio Climático , Ecosistema , Hojas de la Planta
4.
J Anim Ecol ; 90(9): 2015-2026, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33232512

RESUMEN

While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.


Asunto(s)
Sequías , Ecosistema , Animales , Cambio Climático , Emigración e Inmigración , Invertebrados
5.
Ecol Lett ; 23(4): 757-776, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31997566

RESUMEN

A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale-dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross-scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Cadena Alimentaria
6.
Oecologia ; 192(4): 879-891, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32067120

RESUMEN

Individual species can have profound effects on ecological communities, but, in hyperdiverse systems, it can be challenging to determine the underlying ecological mechanisms. Simplifying species' responses by trophic level or functional group may be useful, but characterizing the trait structure of communities may be better related to niche processes. A largely overlooked trait in such community-level analyses is behaviour. In the Neotropics, epiphytic tank bromeliads (Bromeliaceae) harbour a distinct fauna of terrestrial invertebrates that is mainly composed of predators, such as ants and spiders. As these bromeliad-associated predators tend to forage on the bromeliads' support tree, they may influence the arboreal invertebrate fauna. We examined how, by increasing associated predator habitat, bromeliads may affect arboreal invertebrates. Specifically, we observed the trophic and functional group composition, and the behaviour and interspecific interactions of arboreal invertebrates in trees with and without bromeliads. Bromeliads modified the functional composition of arboreal invertebrates, but not the overall abundance of predators and herbivores. Bromeliads did not alter the overall behavioural profile of arboreal invertebrates, but did lead to more positive interactions in the day than at night, with a reverse pattern on trees without bromeliads. In particular, tending behaviours were influenced by bromeliad-associated predators. These results indicate that detailed examination of the functional affiliations and behaviour of organisms can reveal complex effects of habitat-forming species like bromeliads, even when total densities of trophic groups are insensitive.


Asunto(s)
Hormigas , Bromeliaceae , Animales , Ecosistema , Invertebrados , Árboles
7.
Ecol Lett ; 22(1): 19-33, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30370702

RESUMEN

Metacommunity theory provides an understanding of how spatial processes determine the structure and function of communities at local and regional scales. Although metacommunity theory has considered trophic dynamics in the past, it has been performed idiosyncratically with a wide selection of possible dynamics. Trophic metacommunity theory needs a synthesis of a few influential axis to simplify future predictions and tests. We propose an extension of metacommunity ecology that addresses these shortcomings by incorporating variability among trophic levels in 'spatial use properties'. We define 'spatial use properties' as a set of traits (dispersal, migration, foraging and spatial information processing) that set the spatial and temporal scales of organismal movement, and thus scales of interspecific interactions. Progress towards a synthetic predictive framework can be made by (1) documenting patterns of spatial use properties in natural food webs and (2) using theory and experiments to test how trophic structure in spatial use properties affects metacommunity dynamics.


Asunto(s)
Ecosistema , Modelos Biológicos , Ecología , Cadena Alimentaria , Dinámica Poblacional
8.
Proc Biol Sci ; 286(1902): 20190622, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31064301

RESUMEN

Predators and prey often differ in body mass. The ratio of predator to prey body mass influences the predator's functional response (how consumption varies with prey density), and therefore, the strength and stability of the predator-prey interaction. The persistence of food chains is maximized when prey species are neither too big nor too small relative to their predator. Nonetheless, we do not know if (i) food web persistence requires that all predator-prey body mass ratios are intermediate, nor (ii) if this constraint depends on prey diversity. We experimentally quantified the functional response for a single predator consuming prey species of different body masses. We used the resultant allometric functional response to parametrize a food web model. We found that predator persistence was maximized when the minimum prey size in the community was intermediate, but as prey diversity increased, the minimum body size could take a broader range of values. This last result occurs because of Jensen's inequality: the average handling time for multiple prey of different sizes is higher than the handling time of the average sized prey. Our results demonstrate that prey diversity mediates how differences between predators and prey in body mass determine food web stability.


Asunto(s)
Cadena Alimentaria , Insectos/fisiología , Conducta Predatoria , Animales , Tamaño Corporal , Escarabajos/fisiología , Dípteros/fisiología , Modelos Biológicos , Odonata/fisiología , Oligoquetos/fisiología
9.
Glob Chang Biol ; 25(10): 3528-3538, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148300

RESUMEN

Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental change further hampers meaningful predictions. As multiple climatic variables shift in concert, their potential interactions further complicate ecosystem responses. Despite awareness of these complexities, we still lack controlled experiments that manipulate multiple climatic stressors, species interactions, and prior exposure of species to future climatic conditions. Particularly studies that address how changes in water availability interact with other climatic stressors to affect aquatic ecosystems are still rare. Using aquatic insect communities of Neotropical tank bromeliads, we combined controlled manipulations of drought length and species interactions with a space-for-time transplant (lower elevations represent future climate) and a common garden approach. Manipulating drought length and experiment elevation revealed that adverse effects of drought were amplified at the warmer location, highlighting the potential of climatic stressors to synergistically affect communities. Manipulating the presence of omnivorous tipulid larvae showed that negative interactions from tipulids, presumably from predation, arose under drought, and were stronger at the warmer location, stressing the importance of species interactions in mediating community responses to climate change. The common garden treatments revealed that prior community exposure to potential future climatic conditions did not affect the outcome. In this powerful experiment, we demonstrated how complexities arise from the interplay of biotic and abiotic mechanisms of climate change. We stress that single species can steer ecological outcomes, and suggest that focusing on such disproportionately influential species may improve attempts at making meaningful predictions of climate change impacts on food webs.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Animales , Ecología , Ecosistema , Conducta Predatoria
10.
Oecologia ; 190(1): 159-168, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30923907

RESUMEN

The mismatch between the turnover rates of predators and prey is one of the oldest explanations for the existence of inverted trophic pyramids. To date, the hypotheses regarding trophic pyramids have all been based on consumptive trophic links between predators and prey, and the relative contribution of non-consumptive effects is still unknown. In this study, we investigated if the inversion of pyramids in bromeliad ecosystems is driven by (i) a rapid colonization of organisms having short cohort interval production (CPI), and (ii) the prevalence of consumptive or non-consumptive effects of top predators. We used a manipulative experiment to investigate the patterns of prey colonization and to partition the net effects of the dominant predator (damselfly larvae) on biomass pyramids into consumptive (uncaged damselfly larvae) and non-consumptive effects (caged damselfly larvae). Consumptive effects of damselflies strengthened the inversion of trophic pyramids. Non-consumptive effects, however, did not affect the shape of biomass pyramids. Instead, the rapid colonization of organisms with predominantly short CPI sustained the large biomass of top predators found in natural bromeliad ecosystems. Prey colonized bromeliads rapidly, but this high production was never visible as standing stock because damselflies reduce prey densities by more than a magnitude through direct consumption. Our study adds to the growing evidence that there are a variety of possible ways that biomass can be trophically structured. Moreover, we suggest that the strength of biomass pyramids inversion may change with the time of ecological succession as prey communities become more equitable.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Ecología , Conducta Predatoria
11.
Oecologia ; 189(3): 733-744, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30697643

RESUMEN

Abiotic change can alter species interactions by modifying species' trophic roles, but this has not been well studied. Until now, bromeliad-dwelling tipulid larvae were thought to positively affect other macroinvertebrates via a facilitative processing chain. However, under drought, we found the opposite. We performed two microcosm experiments in which we factorially manipulated water level and predation by tipulids, and measured the effects on mosquito and chironomid larvae. The experiments differed in whether high water was contrasted with low or no water, allowing us to distinguish between the effects of desiccation stress (no water) and increased encounter rates due to compression of habitat or reductions in prey mobility (low and no water). We also included a caged tipulid treatment to measure any non-consumptive effects. As well as directly reducing prey survival, reductions in water level indirectly decreased chironomid and mosquito survival by altering the trophic role of tipulids. Our results suggest that increased encounter rates with prey led to tipulids becoming predatory under simulated drought, as tipulids consumed prey under both low and no water. When water level was high, tipulids exerted negative non-consumptive effects on prey survival. Because opportunistic predators are common throughout aquatic ecosystems, the effects of drought on the trophic roles of species may be widespread. Such restructuring of food webs should be considered when attempting to predict the ecological effects of environmental change.


Asunto(s)
Sequías , Ecosistema , Animales , Ecología , Cadena Alimentaria , Conducta Predatoria
12.
Ecology ; 99(5): 1203-1213, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29714828

RESUMEN

Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted.


Asunto(s)
Cambio Climático , Ecosistema , Biodiversidad , Hojas de la Planta
13.
Oecologia ; 187(1): 267-279, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29574580

RESUMEN

Future climate scenarios forecast a 10-50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12-22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.


Asunto(s)
Sequías , Ecosistema , Hongos , Hidrología , Hojas de la Planta
14.
Nature ; 486(7401): 59-67, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22678280

RESUMEN

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Asunto(s)
Biodiversidad , Extinción Biológica , Actividades Humanas , Animales , Cambio Climático/estadística & datos numéricos , Consenso , Ecología/métodos , Ecología/tendencias , Humanos
15.
Glob Chang Biol ; 23(2): 673-685, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27344007

RESUMEN

Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation [a non-consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Animales , Bacterias , Bromeliaceae , Ecología , Ecosistema , Insectos , Conducta Predatoria
16.
J Anim Ecol ; 86(4): 790-799, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28342283

RESUMEN

Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems.


Asunto(s)
Hormigas , Cadena Alimentaria , Animales , Brasil , Bromeliaceae , Ecosistema , Conducta Predatoria
17.
Ecology ; 97(6): 1475-83, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27459778

RESUMEN

Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers.


Asunto(s)
Escarabajos/fisiología , Dípteros/fisiología , Sequías , Cadena Alimentaria , Odonata/fisiología , Animales , Costa Rica , Larva/clasificación , Larva/fisiología , Lluvia , Estrés Fisiológico , Factores de Tiempo
18.
Ecology ; 97(10): 2750-2759, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27859129

RESUMEN

Changes in the distribution of rainfall and the occurrence of extreme rain events will alter the size and persistence of aquatic ecosystems. Such alterations may affect the structure of local aquatic communities in terms of species composition, and by altering species interactions. In many aquatic ecosystems, leaf litter sustains detrital food webs and could regulate the responses of communities to changes in rainfall. Few empirical studies have focused on how rainfall changes will affect aquatic communities and none have evaluated if basal resource diversity can increase resistance to such rainfall effects. In this study, we used water-holding terrestrial bromeliads, a tropical aquatic ecosystem, to test how predicted rainfall changes and litter diversity may affect community composition and trophic interactions. We used structural equation modeling to investigate the combined effects of rainfall changes and litter diversity on trophic interactions. We demonstrated that changes in rainfall disrupted trophic relationships, even though there were only minor direct effects on species abundance, richness, and community composition. Litter diversity was not able to reduce the impact of changes in rainfall on trophic interactions. We suggest that changes in rainfall can alter the way in which species interact with each other, decreasing the linkages among trophic groups. Such reductions in biotic interactions under climate change will have critical consequences for the functioning of tropical aquatic ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Cadena Alimentaria , Hidrobiología , Hojas de la Planta , Lluvia
19.
Ecology ; 97(8): 2147-2156, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27859200

RESUMEN

Food webs of freshwater ecosystems can be subsidized by allochthonous resources. However, it is still unknown which environmental factors regulate the relative consumption of allochthonous resources in relation to autochthonous resources. Here, we evaluated the importance of allochthonous resources (litterfall) for the aquatic food webs in Neotropical tank bromeliads, a naturally replicated aquatic microcosm. Aquatic invertebrates were sampled in more than 100 bromeliads within either open or shaded habitats and within five geographically distinct sites located in four different countries. Using stable isotope analyses, we determined that allochthonous sources comprised 74% (±17%) of the food resources of aquatic invertebrates. However, the allochthonous contribution to aquatic invertebrates strongly decreased from shaded to open habitats, as light incidence increased in the tanks. The density of detritus in the tanks had no impact on the importance of allochthonous sources to aquatic invertebrates. This overall pattern held for all invertebrates, irrespective of the taxonomic or functional group to which they belonged. We concluded that, over a broad geographic range, aquatic food webs of tank bromeliads are mostly allochthonous-based, but the relative importance of allochthonous subsidies decreases when light incidence favors autochthonous primary production. These results suggest that, for other freshwater systems, some of the between-study variation in the importance of allochthonous subsidies may similarly be driven by the relative availability of autochthonous resources.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Cadena Alimentaria , Invertebrados/fisiología , Animales , Bromelia , Agua Dulce
20.
J Anim Ecol ; 85(5): 1147-60, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27120013

RESUMEN

Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.


Asunto(s)
Organismos Acuáticos/fisiología , Sequías , Cadena Alimentaria , Conducta Predatoria , Lluvia , Animales , Bromeliaceae/crecimiento & desarrollo , Costa Rica , Ecosistema , Guyana Francesa , Puerto Rico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA