Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(3): 1571-1589, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34982539

RESUMEN

δ-Bi2O3:M (M = S, Se, and Re) with an oxygen-defective fluorite-type structure is obtained by a coprecipitation method starting from the bismuth oxido cluster [Bi38O45(OMc)24(dmso)9]·2dmso·7H2O (A) in the presence of additives such as Na2SO4, Na2SeO4, NH4ReO4, Na2SeO3·5H2O, and Na2SO3. The coprecipitation of the starting materials with aqueous NaOH results in the formation of alkaline reaction mixtures, and the cubic bismuth(III)-based oxides Bi14O20(SO4) (1c), Bi14O20(SeO4) (2c), Bi14O20(ReO4.5) (3c), Bi12.25O16.625(SeO3)1.75 (4c), and Bi10.51O14.765(SO3)0.49(SO4)0.51 (5c) are obtained after microwave-assisted heating; formation of compound 5c is the result of partial oxidation of sulfur. The compounds 1c, 2c, 4c, and 5c absorb UV light only, whereas compound 3c absorbs in the visible-light region of the solar spectrum. Thermal treatment of the as-prepared metastable bismuth(III) oxide chalcogenates 1c and 2c at T = 600 °C provides a monotropic phase transition into their tetragonal polymorphs Bi14O20(SO4) (1t) and Bi14O20(SeO4) (2t), while compound 3c is transformed into the tetragonal modification of Bi14O20(ReO4.5) (3t) after calcination at T = 700 °C. Compounds of the systems Bi2O3-SOx (x = 2 and 3) and Bi2O3-Re2O7 are thermally stable up to T = 800 °C, whereas compounds of the system Bi2O3-SeO3 completely lose SeO3. Thermal treatment of 4c and 5c in air results in the oxidation of the tetravalent to hexavalent sulfur and selenium, respectively, upon heating to T = 400-500 °C. The as-prepared cubic bismuth(III)-based oxides 1c-5c were studied with regard to the photocatalytic decomposition of rhodamine B under visible-light irradiation with compound 3c showing the highest turnover and efficiency.

2.
Inorg Chem ; 60(15): 11231-11241, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34286961

RESUMEN

Crystals of RETe1.875±Î´ (RE = Ce, Pr, Sm, Gd; 0.004 ≤ δ ≤ 0.025) were grown using alkali halide flux and chemical transport reactions. The crystal structures are described in space group Amm2 (no. 38), with lattice parameters of a = 13.3729(5) Å, b = 17.7918(5) Å, c = 18.1561(4) Å for CeTe1.87(1) (T = 100 K), a = 13.271(2) Å, b = 17.747(3) Å, c = 18.160(3) Å for PrTe1.85(1) (T = 100 K), a = 13.1251(6) Å, b = 17.4269(8) Å, c = 17.8808(8) Å for SmTe1.87(1) (T = 100 K), and a = 13.1762(4) Å, b = 17.4995(5) Å, c = 17.9591(5) Å for GdTe1.88(1) (T = 296 K). The structures contain alternating stacks of puckered [RETe] slabs and planar [Te] layers. The latter are composed of small anionic entities, such as Te2- and Te22-, along with a large anionic eight-membered Te ring, as supported by electron localizability indicator-based bond analysis for an ordered model of GdTe1.875. Slightly different patterns for individual compounds indicate a considerable structural flexibility. Temperature-dependent resistance measurements confirm semiconducting behavior for PrTe1.875±Î´ and GdTe1.875±Î´ (magnetic data evidence RE3+ and an antiferromagnetic transition at TN = 4 K for CeTe1.875±Î´ and TN = 11 K for GdTe1.875±Î´), whereas PrTe1.875±Î´ and SmTe1.875±Î´ show no long-range order down to 2 K.

3.
ChemistryOpen ; 12(7): e202300032, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37469025

RESUMEN

This paper describes solid solutions in the quasibinary oxide system iridium-titanium IrO2 -TiO2 with rutile and anatase crystal structures. Based on X-ray diffraction evaluations using Rietveld refinements, changes of lattice parameters were determined within the composition series of 0-100 mol % iridium. These changes prove the existence of a complete solid solution series in the rutile structure type. The solubility limit for iridium in the anatase lattice was found to be 6.0(8) mol % iridium for the underlying sol-gel process. In addition, iridium is a promoter for the conversion from anatase to rutile type. Furthermore, the X-ray diffraction results of a calcination temperature series for the composition with 5 mol % iridium are shown, which confirm the findings of the composition series and allow conclusions on the phase segregation behavior. The results are complemented by 2-point conductivity measurements at different pressures in a piston press to investigate the question of the conductivity mechanism.

4.
ChemistryOpen ; 11(12): e202200232, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36457175

RESUMEN

From aqueous precursor solutions of metal salts and sodium sulfide using MicroJet Reactor (MJR) technology Cd1-x Znx S and CdS/ZnS core/shell semiconductor nanoparticles were synthesized. The MJR approach represents an automated, continuous, flexible and scalable route for nanoparticle synthesis, providing a tight control over process parameters and thus simple size, shape and composition control. Since particle sizes below the excitonic Bohr radius were obtained by MJR, the nanoparticulate materials exhibit quantum confinement effects. By varying the precursor ratio the band gap of Cd1-x Znx S Quantum Dots (QDs) could be targeted from 3.1 to 3.6 eV. CdS/ZnS core/shell QDs were prepared by enclosing CdS particles from MJR with ZnS produced by thermal decomposition of a Zn-MPA complex. Adjustment of the shell thickness increased the photoluminescence intensity by 43 %. Synthesis of ternary sulfides in the form of core/shell particles broadens the spectrum of materials accessible by MJR and demonstrates the extraordinary flexibility of the technology.

5.
ChemistryOpen ; 11(3): e202100282, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35324085

RESUMEN

Cerium-bismuth oxides have emerged as promising candidates for Diesel soot oxidation. The catalysts are synthesized via automated co-precipitation methods. T50 values, where 50 % of soot is oxidized, and the dynamic oxygen storage capacity (OSCdyn ) are used to compare the catalytic activity. The activity is measured by thermogravimetric methods. The synthesized catalysts are characterized through powder X-ray diffraction (PXRD), Raman spectroscopy, and specific surface area (SBET ) measurements. This work investigates the influence of the contact mode between soot and catalyst. The literature-known manual contact modes "loose", "tight", and "wet" are compared with our developed automated contact mode, using a dual asymmetric centrifuge. The rotation speed rs and mixing time tM have been varied independently. Both factors influence the T50 value. A continuous transition from loose to tight contact mode with increasing rotation speed rs can be shown. Furthermore, the automated contact mode shows better reproducibility behavior compared to manual contact modes.

6.
ChemistryOpen ; 11(11): e202200180, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36385481

RESUMEN

The high-throughput screening investigations on TiO2 based photocatalyst composites presented here have been carried out in a 60-fold parallel photoreactor. Additional catalyst testing was performed in a microslit reactor system with immobilized catalysts. For further enhancing the photocatalytic activity of TiO2 (P25), composites of P25 and, for example, Bi2 O3 , CeO2 , g-C3 N4 , WO3 or ZnO were formulated in different nominal molar ratios. The catalysts' performances were assessed by their conversion of 17α-ethinyl estradiol (EE2) in aqueous solutions, determined by LC-MS. Findings show rapid EE2 conversions in short residence times. The extensive testing of catalysts led to the conclusion that the photocatalytic conversion is rather a function of residence time than a function of the materials utilized. This makes adequate process development seem more important than material development. The novelty of this contribution lies in the unique combination of testing a wide range of composite catalysts in a unique microreactor geometry.


Asunto(s)
Contaminantes Ambientales , Ensayos Analíticos de Alto Rendimiento , Titanio , Catálisis
7.
Materials (Basel) ; 13(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197456

RESUMEN

In this paper, the syntheses of a set of cerium-bismuth mixed oxides with the formula Ce1-xBixO2-x/2, where the range of x is 0.0 to 1.0 in 10 mol% steps, via co-precipitation methods is described. Two synthesis routes are tested: The "normal" and the so called "reverse strike" (RS) co-precipitation route. The syntheses are performed with an automated synthesis robot. The activity for Diesel soot oxidation is measured by temperature programmed oxidation with an automated, serial thermogravimetric and differential scanning calorimetry system (TGA/DSC). P90 is used as a model soot. An automated and reproducible tight contact between soot and catalyst is used. The synthesized catalysts are characterized in terms of the specific surface area according to Brunauer, Emmett and Teller (SBET), as well as the dynamic oxygen storage capacity (OSCdyn). The crystalline phases of the catalysts are analysed by powder X-ray diffraction (PXRD) and Raman spectroscopy. The elemental mass fraction of the synthesized catalysts is verified by X-ray fluorescence (XRF) analysis. A correlation between the T50 values, OSCdyn and SBET has been discovered. The best catalytic performance is exhibited by the catalyst with the formula RS-Ce0.8Bi0.2Ox which is synthesized by the reverse strike co-precipitation route. Here, a correlation between activity, OSCdyn, and SBET can be confirmed based on structural properties.

8.
Materials (Basel) ; 13(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197369

RESUMEN

The rising pollution of surface water by endocrine disruptive chemicals (EDCS) could lead to the persistent harm of aquatic wildlife. Addressing this concern, advanced waste water treatment techniques should be established in addition to the present sewage treatment. Therefore, the promising advanced oxidation process of photocatalysis is discussed. With the aim of establishing a novel high throughput screening approach for photocatalysts, a workflow resting upon the use of a self-constructed 60-fold parallel stirring UV-A LED photoreactor, followed by parallel sample extraction by SPE and sequential automated analysis by GC-MS, was developed, and is presented in this article. With the described system, TiO2-based photocatalysts, doped with different amounts of zinc, and synthesised by a sol-gel-route, were tested regarding their activity in the photocatalytic degradation of the synthetic estrogen 17α-ethinylestradiol. Thereby, the functional behavior of the photoreactor system and its applicability in a high throughput process could be evaluated. As a result of the catalyst screening, TiO2 catalysts with low amounts of zinc were found with a significantly higher activity, compared to undoped TiO2. In conclusion, the presented system provides an easily accessible high throughput method for a variety of photocatalytic experiments.

9.
Angew Chem Int Ed Engl ; 46(32): 6016-67, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17640024

RESUMEN

There is increasing acceptance of high-throughput technologies for the discovery, development, and optimization of materials and catalysts in industry. Over the years, the relative synchronous development of technologies for parallel synthesis and characterization has been accompanied by developments in associated software and information technologies. This Review aims to provide a comprehensive overview on the state of the art of the field by selected examples. Technologies developed to aid research on complex materials are covered as well as databases, design of experiment, data-mining technologies, modeling approaches, and evolutionary strategies for development. Different methods for parallel synthesis provide single sample libraries, gradient libraries for electronic or optical materials, similar to polymers and catalysts, and products produced through formulation strategies. Many examples illustrate the variety of isolated solutions and document the barely recognized variety of new methods for the synthesis and analysis of almost any material. The Review ends with a summary of success stories and statements on still-present problems and future tasks.

10.
ChemSusChem ; 5(9): 1778-86, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22807462

RESUMEN

The preparation of silica-containing organic-inorganic hybrid materials composed of kraft lignin, alkoxysilanes, and organic linkers was investigated. 3-Glycidyloxypropyltrimethoxysilane, 3-(triethoxysilyl)propylisocyanate (IPTES), and bis(trimethoxysilyl)hexane were selected as the most promising linkers. The best materials obtained showed improved mechanical and thermal properties compared with lignin itself. The reaction of the hydroxyl groups with IPTES and the sol-gel reaction between the organic linker molecules were studied by attenuated total reflectance FTIR and solid-state ²9Si magic-angle spinning NMR spectroscopy. The homogeneous composition was demonstrated by electron microscopy and energy-dispersive X-ray spectroscopy mapping. The mechanical properties were investigated by microindentation and dynamic mechanical thermal analysis.


Asunto(s)
Lignina/química , Fenómenos Mecánicos , Siloxanos/química , Siloxanos/síntesis química , Técnicas de Química Sintética , Silanos/química
12.
Angew Chem Int Ed Engl ; 41(15): 2725-30, 2002 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-12203467
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA