Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 568(7752): E8-E10, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30944483

RESUMEN

In this Article, owing to issues with the first 30 nucleotides of the sgRNA, which run in the opposite direction, corrections have been made to the Protein Data Bank (PDB) accessions in the 'Data availability' section, and this also affects Figs. 3, 4, Extended Data Fig. 6, Supplementary Table 1 and Supplementary Video 1. The original Article has been corrected online. See the accompanying Amendment for further details.

2.
Nature ; 566(7743): 218-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718774

RESUMEN

The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.


Asunto(s)
Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , División del ADN , Escherichia coli/genética , Evolución Molecular , Silenciador del Gen , Genoma Bacteriano/genética , Genoma Humano/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312822

RESUMEN

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Hipocampo/patología , Actinas/genética , Adenosina Trifosfato/genética , Animales , Trastorno del Espectro Autista/patología , Conducta Animal/fisiología , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Dendritas/genética , Dendritas/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Factores de Transcripción/genética
4.
Nucleic Acids Res ; 45(11): e98, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28334779

RESUMEN

Realizing the full potential of genome editing requires the development of efficient and broadly applicable methods for delivering programmable nucleases and donor templates for homology-directed repair (HDR). The RNA-guided Cas9 endonuclease can be introduced into cells as a purified protein in complex with a single guide RNA (sgRNA). Such ribonucleoproteins (RNPs) can facilitate the high-fidelity introduction of single-base substitutions via HDR following co-delivery with a single-stranded DNA oligonucleotide. However, combining RNPs with transgene-containing donor templates for targeted gene addition has proven challenging, which in turn has limited the capabilities of the RNP-mediated genome editing toolbox. Here, we demonstrate that combining RNP delivery with naturally recombinogenic adeno-associated virus (AAV) donor vectors enables site-specific gene insertion by homology-directed genome editing. Compared to conventional plasmid-based expression vectors and donor templates, we show that combining RNP and AAV donor delivery increases the efficiency of gene addition by up to 12-fold, enabling the creation of lineage reporters that can be used to track the conversion of striatal neurons from human fibroblasts in real time. These results thus illustrate the potential for unifying nuclease protein delivery with AAV donor vectors for homology-directed genome editing.


Asunto(s)
Proteínas Bacterianas/química , Dependovirus/genética , Endonucleasas/química , Técnicas de Sustitución del Gen , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Diferenciación Celular , Fibroblastos/fisiología , Ingeniería Genética/métodos , Vectores Genéticos , Genoma Humano , Células HEK293 , Humanos , Neuronas/metabolismo , Homología de Secuencia de Ácido Nucleico
5.
Proc Natl Acad Sci U S A ; 112(10): 2984-9, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713377

RESUMEN

Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Hidrólisis , Conformación de Ácido Nucleico , Streptococcus pyogenes/enzimología , Transcripción Genética
6.
Nature ; 460(7255): 642-6, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19561591

RESUMEN

One of the most distinctive steps in the development of the vertebrate nervous system occurs at mitotic exit when cells lose multipotency and begin to develop stable connections that will persist for a lifetime. This transition is accompanied by a switch in ATP-dependent chromatin-remodelling mechanisms that appears to coincide with the final mitotic division of neurons. This switch involves the exchange of the BAF53a (also known as ACTL6a) and BAF45a (PHF10) subunits within Swi/Snf-like neural-progenitor-specific BAF (npBAF) complexes for the homologous BAF53b (ACTL6b) and BAF45b (DPF1) subunits within neuron-specific BAF (nBAF) complexes in post-mitotic neurons. The subunits of the npBAF complex are essential for neural-progenitor proliferation, and mice with reduced dosage for the genes encoding its subunits have defects in neural-tube closure similar to those in human spina bifida, one of the most serious congenital birth defects. In contrast, BAF53b and the nBAF complex are essential for an evolutionarily conserved program of post-mitotic neural development and dendritic morphogenesis. Here we show that this essential transition is mediated by repression of BAF53a by miR-9* and miR-124. We find that BAF53a repression is mediated by sequences in the 3' untranslated region corresponding to the recognition sites for miR-9* and miR-124, which are selectively expressed in post-mitotic neurons. Mutation of these sites led to persistent expression of BAF53a and defective activity-dependent dendritic outgrowth in neurons. In addition, overexpression of miR-9* and miR-124 in neural progenitors caused reduced proliferation. Previous studies have indicated that miR-9* and miR-124 are repressed by the repressor-element-1-silencing transcription factor (REST, also known as NRSF). Indeed, expression of REST in post-mitotic neurons led to derepression of BAF53a, indicating that REST-mediated repression of microRNAs directs the essential switch of chromatin regulatory complexes.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Sistema Nervioso/embriología , Regiones no Traducidas 3'/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Células CHO , Línea Celular , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cricetinae , Cricetulus , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dendritas/fisiología , Ratones , Ratones Transgénicos , Mitosis , Sistema Nervioso/citología , Neuronas/citología , Proteínas Represoras/metabolismo , Células Madre/metabolismo
7.
J Neurosci ; 33(25): 10348-61, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785148

RESUMEN

During the development of the vertebrate nervous system, neural progenitors divide, generate progeny that exit mitosis, and then migrate to sites where they elaborate specific morphologies and synaptic connections. Mitotic exit in neurons is accompanied by an essential switch in ATP-dependent chromatin regulatory complexes from the neural progenitor Brg/Brm-associated factor (npBAF) to neuron-specific nBAF complexes that is in part driven by miR-9/9* and miR-124. Recapitulating this microRNA/chromatin switch in fibroblasts leads to their direct conversion to neurons. We have defined the kinetics of neuron-specific BAF complex assembly in the formation of induced neurons from mouse embryonic stem cells, human fibroblasts, and normal mouse neural differentiation and, using proteomic analysis, found that this switch also includes the removal of SS18 and its replacement by CREST at mitotic exit. We found that switching of chromatin remodeling mechanisms is highly correlated with a broad switch in the use of neurogenic transcription factors. Knock-down of SS18 in neural stem cells causes cell-cycle exit and failure to self-renew, whereas continued expression of SS18 in neurons blocks dendritic outgrowth, underlining the importance of subunit switching. Because dominant mutations in BAF subunits underlie widely different human neurologic diseases arising in different neuronal types, our studies suggest that the characteristics of these diseases must be interpreted in the context of the different BAF assemblies in neurons rather than a singular mammalian SWItch/sucrose nonfermentable (mSWI/SNF) complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Axones/fisiología , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Conducta Animal/fisiología , Western Blotting , Diferenciación Celular/fisiología , Células Cultivadas , ADN/genética , Electroporación , Embrión no Mamífero , Femenino , Homeostasis/fisiología , Inmunohistoquímica , Hibridación in Situ , Masculino , Microscopía Confocal , Plásmidos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Retina/crecimiento & desarrollo , Retina/fisiología , Visión Ocular/fisiología , Xenopus , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
8.
Proc Natl Acad Sci U S A ; 106(13): 5181-6, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19279220

RESUMEN

Mammalian SWI/SNF [also called BAF (Brg/Brahma-associated factors)] ATP-dependent chromatin remodeling complexes are essential for formation of the totipotent and pluripotent cells of the early embryo. In addition, subunits of this complex have been recovered in screens for genes required for nuclear reprogramming in Xenopus and mouse embryonic stem cell (ES) morphology. However, the mechanism underlying the roles of these complexes is unclear. Here, we show that BAF complexes are required for the self-renewal and pluripotency of mouse ES cells but not for the proliferation of fibroblasts or other cells. Proteomic studies reveal that ES cells express distinctive complexes (esBAF) defined by the presence of Brg (Brahma-related gene), BAF155, and BAF60A, and the absence of Brm (Brahma), BAF170, and BAF60C. We show that this specialized subunit composition is required for ES cell maintenance and pluripotency. Our proteomic analysis also reveals that esBAF complexes interact directly with key regulators of pluripotency, suggesting that esBAF complexes are specialized to interact with ES cell-specific regulators, providing a potential explanation for the requirement of BAF complexes in pluripotency.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/fisiología , Animales , Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/análisis , Fibroblastos/citología , Ratones , Proteínas Musculares/análisis , Proteómica , Factores de Transcripción/análisis
9.
Neuron ; 55(2): 201-15, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17640523

RESUMEN

Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Krüppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-like ATPases, Brg and Brm. As neural progenitors exit the cell cycle, these subunits are replaced by the homologous BAF45b, BAF45c, and BAF53b. BAF45a/53a subunits are necessary and sufficient for neural progenitor proliferation. Preventing the subunit switch impairs neuronal differentiation, indicating that this molecular event is essential for the transition from neural stem/progenitors to postmitotic neurons. More broadly, these studies suggest that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits.


Asunto(s)
Diferenciación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Complejos Multienzimáticos/metabolismo , Células Madre Multipotentes/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Células Madre Multipotentes/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética
10.
Nat Commun ; 12(1): 5664, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580310

RESUMEN

Proteins evolve through the modular rearrangement of elements known as domains. Extant, multidomain proteins are hypothesized to be the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic minimization by iterative size-exclusion and recombination (MISER) for comprehensively making all possible deletions of a protein. Using MISER, we generate a deletion landscape for the CRISPR protein Cas9. We find that the catalytically-dead Streptococcus pyogenes Cas9 can tolerate large single deletions in the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo, and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Dominios y Motivos de Interacción de Proteínas/genética , ARN Guía de Kinetoplastida/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/ultraestructura , Línea Celular Tumoral , Microscopía por Crioelectrón , ADN/metabolismo , Edición Génica/métodos , Humanos , Imagen Individual de Molécula
11.
ACS Cent Sci ; 6(9): 1564-1571, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999931

RESUMEN

The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o-quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.

12.
Nat Biotechnol ; 35(5): 431-434, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28191903

RESUMEN

We demonstrate editing of post-mitotic neurons in the adult mouse brain following injection of Cas9 ribonucleoprotein (RNP) complexes in the hippocampus, striatum and cortex. Engineered variants of Cas9 with multiple SV40 nuclear localization sequences enabled a tenfold increase in the efficiency of neuronal editing in vivo. These advances indicate the potential of genome editing in the brain to correct or inactivate the underlying genetic causes of neurological diseases.


Asunto(s)
Proteínas Bacterianas/genética , Encéfalo/fisiología , Proteínas Asociadas a CRISPR/genética , Endonucleasas/genética , Edición Génica/métodos , Proteínas del Tejido Nervioso/fisiología , Ribonucleoproteínas/genética , Animales , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/administración & dosificación , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Marcación de Gen/métodos , Masculino , Ratones , Ingeniería de Proteínas/métodos
13.
Nat Commun ; 8(1): 1424, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127284

RESUMEN

CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 °C, compared to 45 °C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endonucleasas/metabolismo , Geobacillus stearothermophilus/enzimología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/sangre , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Endonucleasas/administración & dosificación , Endonucleasas/sangre , Estabilidad de Enzimas , Edición Génica , Calor , Humanos , Modelos Moleculares , Ingeniería de Proteínas , Ribonucleoproteínas/administración & dosificación
14.
Nat Biotechnol ; 34(6): 646-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27136077

RESUMEN

The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disruption of the enzyme's binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the estrogen receptor-α ligand-binding domain. This protein showed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9.


Asunto(s)
Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Genes de Cambio/genética , Mutagénesis Insercional/genética , Mutagénesis Insercional/métodos , Ingeniería de Proteínas/métodos , Regulación Alostérica/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica , Dominios Proteicos
15.
Elife ; 3: e04766, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25497837

RESUMEN

The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Endonucleasas/genética , Genoma Humano , ARN Guía de Kinetoplastida/genética , Reparación del ADN por Recombinación , Secuencia de Bases , Ciclo Celular/genética , Supervivencia Celular , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Embrión de Mamíferos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endonucleasas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Células HEK293 , Humanos , Recién Nacido , Datos de Secuencia Molecular , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Staphylococcus/química , Staphylococcus/enzimología , Factores de Tiempo
16.
Curr Opin Neurobiol ; 23(6): 903-13, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24090879

RESUMEN

Several features make the chromatin environment of neurons likely to be different than any other cell type. These include the fact that several hundred types of neurons exist, each requiring specialized patterns of gene expression and in turn specialized chromatin landscapes. In addition, neurons have the most stable morphology of any cell type, a unique feature essential for memory. Yet these stable morphologies must allow the emergence of new stable morphologies in response to environmental influences permitting learning to occur by altered morphology and new synapse formation. Several years ago we found that neurons have specific chromatin remodeling mechanisms not present in any other cell type that are produced by combinatorial assembly of ATP-dependent chromatin remodeling complexes. The neural specific subunits are essential for normal neural development, learning and memory. Remarkably, recreating these neural specific complexes in fibroblasts leads to their conversion to neurons. Recently, the subunits of these complexes have been found to have genetically dominant roles in several human neurologic diseases. The genetic dominance of these mutations suggests that less severe mutations will contribute to phenotypic variation in human neuronally derived traits.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Cromatina/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Neuronas/citología
17.
Nat Neurosci ; 16(7): 851-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708140

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, we assessed the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n = 141 exomes). We found that amino acid-altering de novo mutations were enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex (nBAF) component SS18L1 (also known as CREST). CREST mutations inhibited activity-dependent neurite outgrowth in primary neurons, and CREST associated with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Proteínas Nucleares/genética , Transactivadores/genética , Adulto , Animales , Células Cultivadas , Corteza Cerebral/citología , Dendritas/genética , Dendritas/metabolismo , Embrión de Mamíferos , Salud de la Familia , Femenino , Genotipo , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Proteína FUS de Unión a ARN/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA