Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(2): e0168222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719222

RESUMEN

Amplification of the IS900 multicopy element is a hallmark nucleic acid-based diagnostic test for Mycobacterium avium subsp. paratuberculosis, which causes Johne's disease in ruminants. This assay is frequently used to determine the presence of the bacterium in feces of infected cattle and sheep. Two IS900 primer sets developed in the 1990s were widely used for decades, and their use has continued in current studies. However, these primers were developed prior to the availability of complete genome sequences. Recent sequence analysis of the binding locations for one primer pair (P90/P91) identified errors and binding inefficiencies that can be easily corrected to further increase detection sensitivity. The P90 primer is missing two nucleotides that should be present near the 3' end, and it does not bind all copies of IS900 due to 5' deletions at some IS900 loci. These IS900 primer pairs, along with newly developed primers, were tested by real-time PCR on purified genomic DNA to determine which primer set performed the best and how primer design errors affect amplification efficiencies. The newly designed PCR primer set (JB5) showed increased sensitivity by two to three quantification cycles using purified genomic DNA and was similar in efficiency to 150C/921. These tests were extended using DNA from feces and tissues of infected cows, which showed similar results. Finally, a 167-bp partial duplication of IS900 was found in type I strains. Although P90 and P91 primers successfully amplify M. avium subsp. paratuberculosis DNA, their use should be discontinued in favor of more efficient primer pairs in future studies. IMPORTANCE This study is an example of how applied genomic analysis can aid diagnostic test improvements. Detection of Mycobacterium avium subsp. paratuberculosis infection of livestock prior to the appearance of clinical disease signs is very difficult but essential for identifying animals shedding the bacterium to prevent transmission of Johne's disease. Total M. avium subsp. paratuberculosis quantity in the feces as determined by real-time PCR (qPCR) using the IS900 target indicates bacterial shedding status and potential for transmission of the pathogen. However, legacy primers designed prior to the availability of complete genome sequences that are used in these tests to detect M. avium subsp. paratuberculosis were based on data from only a single copy of IS900 and not considering all copies collectively as a group. This approach resulted in primer design errors which can be easily corrected to improve test sensitivities. We tested original primers that contain these errors and their corrected versions by qPCR and showed improved sensitivity on purified genomic DNA as well as fecal and tissue samples. These findings may help detect the organism from environmental samples on farms where sensitivity is currently lacking.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Femenino , Bovinos , Ovinos , Animales , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculosis/diagnóstico , Paratuberculosis/genética , Paratuberculosis/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos Transponibles de ADN , ADN Bacteriano/genética , ADN Bacteriano/análisis , Heces/microbiología , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/microbiología
2.
Vet Res ; 52(1): 55, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849661

RESUMEN

Cell-mediated immune responses to Mycobacterium avium subsp. paratuberculosis (MAP) are regulated by various types of T lymphocytes. The aim of this study was to quantitate T cell subsets in the mid-ileum of cows naturally infected with MAP to identify differences during different stages of infection, and to determine whether these subsets could be used as predictors of disease state. Immunofluorescent labeling of T cell subsets and macrophages was performed on frozen mid-ileal tissue sections archived from naturally infected dairy cows in either subclinical or clinical disease status, and noninfected control cows. Comprehensive IF staining for CD4, CD8α, TcR1-N24 (gamma delta), FoxP3, CXCR3 and CCR9 served to define T cell subsets and was correlated with macrophages present. Clinically affected cows demonstrated significantly higher numbers of CXCR3+ (Th1-type) and CCR9+ (total small intestinal lymphocytes) cells at the site of infection compared to the subclinical cows and noninfected controls. Further, predictive modeling indicated a significant interaction between CXCR3+ and AM3K+ (macrophages) cells, suggesting that progression to clinical disease state aligns with increased numbers of these cell types at the site of infection. The ability to predict disease state with this model was improved from previous modeling using immunofluorescent macrophage data. Predictive modelling indicated an interaction between CXCR3+ and AM3K+ cells, which could more sensitively detect subclinical cows compared to clinical cows. It may be possible to use this knowledge to improve and develop an assay to detect subclinically infected animals with more confidence during the early stages of the disease.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Macrófagos/inmunología , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Paratuberculosis/microbiología , Animales , Biomarcadores/análisis , Bovinos , Femenino , Intestinos/inmunología , Intestinos/microbiología , Macrófagos/microbiología , Linfocitos T/fisiología
3.
Vet Res ; 52(1): 11, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478585

RESUMEN

Infection with Mycobacterium avium subspecies paratuberculosis (MAP) is complex, but little is known about the role that natural killer (NK) cells play. In the present study, four bovine NK-lysin peptides were synthesized to evaluate their bactericidal activity against MAP. The results demonstrated that bNK-lysin peptides were directly bactericidal against MAP, with bNK1 and bNK2A being more potent than bNK2B and bNK2C. Mechanistically, transmission electron microscopy revealed that the incubation of MAP with bNK2A resulted in extensive damage to cell membranes and cytosolic content leakage. Furthermore, the addition of bNK2A linked with a cell-penetrating peptide resulted in increased MAP killing in a macrophage model.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium avium subsp. paratuberculosis/efectos de los fármacos , Proteolípidos/farmacología , Animales , Bovinos
4.
Vet Pathol ; 56(5): 671-680, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31060445

RESUMEN

Johne's disease is an enteric disease caused by the intracellular pathogen Mycobacterium avium subsp. paratuberculosis (MAP). Upon ingestion of MAP, it is translocated across the intestinal epithelium and may be killed by intestinal macrophages, or depending on the bacterial burden and immunological status of the animal, MAP may thwart innate defense mechanisms and persist within the macrophage. This study aimed to determine the numbers of macrophages and MAP present in bovine midileal tissue during different stages of infection. Immunofluorescent (IF) labeling was performed on frozen bovine midileal intestinal tissue collected from 28 Holstein dairy cows. The number of macrophages in midileal tissue sections was higher for clinically affected cows, followed by subclinically affected cows and then uninfected control cows. Macrophages were present throughout the tissue sections in clinical cows, including the tunica muscularis, submucosa, and the lamina propria around the crypts and in the villous tips, with progressively fewer macrophages in subclinically affected and control cows. Clinically affected cows also demonstrated significantly higher numbers of MAP and higher numbers of macrophages with intracellular MAP compared to subclinically affected cows. MAP IF labeling was present within the submucosa and lamina propria around the crypts, progressing into the villous tips in some clinically affected cows. Our findings indicate that number of macrophages increases with progression of infection, but a significant number of the macrophages present in the midileum are not associated with MAP.


Asunto(s)
Enfermedades de los Bovinos/patología , Intestinos/patología , Macrófagos/fisiología , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/patología , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Femenino , Intestinos/microbiología , Paratuberculosis/microbiología
5.
Mol Microbiol ; 105(4): 525-539, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28558126

RESUMEN

Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.


Asunto(s)
Pared Celular/genética , Lípidos de la Membrana/genética , Péptido Sintasas/genética , Secuencia de Aminoácidos , Pared Celular/metabolismo , Pared Celular/fisiología , Lípidos de la Membrana/química , Mycobacterium avium/genética , Mycobacterium avium/metabolismo , Péptidos/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
6.
Microbiology (Reading) ; 162(4): 633-641, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26888023

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.

7.
J Immunol Methods ; 512: 113407, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528086

RESUMEN

Peripheral blood mononuclear cells (PBMCs) are critical for assessment of host immune responses to infectious disease. The isolation of PBMCs from whole blood is a laborious process involving density gradients and multiple centrifugation steps. In the present study we compared a more traditional method of PBMC isolation used in our laboratory to two novel methods of cell isolation for efficiency, cell viability, and enumeration of cell subsets. Our laboratory method uses Histopaque-1077 density gradient in standard conical tubes and this was compared with isolation of cells using SepMate™ tubes, a novel conical tube containing an insert to separate the density gradient. Multiple experiments were performed to optimize the SepMate™ tubes for use with cattle blood. A final experiment was conducted to compare traditional methodology, the optimized SepMate™ method with a more novel method using cell preparation tubes (CPT-10 vacutainers containing density gradient). Results demonstrated that optimization of the SepMate™ tube methodology was necessary, including dilution of blood and addition of centrifugation steps to reduce platelet contamination. The CPT-10 tubes worked well but cell recovery was lower compared to other methods. Both of the newer methods were comparable to a modified version of our traditional laboratory method of PBMC isolation in terms of numbers of recovered viable cells and the frequency of immune cell subsets. Additionally, efficiency was improved, particularly with the SepMate™ tube method, resulting in reduced time in the laboratory as well as reduced usage of plasticware.


Asunto(s)
Leucocitos Mononucleares , Bovinos , Animales , Separación Celular/métodos , Supervivencia Celular , Centrifugación por Gradiente de Densidad/métodos , Centrifugación
8.
Front Vet Sci ; 10: 1117591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816182

RESUMEN

Introduction: Macrophages are the preferential target of Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of ruminant paratuberculosis. Uptake of pathogens by intestinal macrophages results in their trafficking through endosomal compartments, ultimately leading to fusion with an acidic lysosome to destroy the pathogen. MAP possesses virulence factors which disrupt these endosomal pathways. Additionally, levels of serum vitamin D3 have proven relevant to host immunity. Dynamics of endosomal trafficking and vitamin D3 metabolism have been largely unexplored in bovine paratuberculosis. Methods: This study aimed to characterize expression of early and late endosomal markers Rab5 and Rab7, respectively, within CD68+ macrophages in frozen mid-ileum sections harvested from cows at different stages of natural paratuberculosis infection. Additionally, factors of vitamin D3 signaling and metabolism were characterized through expression of vitamin D3 activating enzyme 1α-hydroxylase (CYP27B1), vitamin D3 inactivating enzyme 24-hydroxylase (CYP24A1), and vitamin D3 receptor (VDR) within CD68+ ileal macrophages. Results and discussion: Cows with clinical paratuberculosis had significantly greater macrophage and MAP burden overall, as well as intracellular MAP. Total expression of Rab5 within macrophages was reduced in clinical cows; however, Rab5 and MAP colocalization was significantly greater in this group. Intracellular Rab7 colocalization with MAP was not detected in subclinical or Johne's Disease negative (JD-) control cows but was present in clinical cows. Additionally, macrophage CYP27B1 expression was significantly reduced in clinical cows. Taken together, the results from this study show disparate patterns of expression for key mediators in intracellular MAP trafficking and vitamin D metabolism for cows at different stages of paratuberculosis.

9.
Vaccines (Basel) ; 11(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376474

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a severe gastroenteritis of ruminants. This study developed a model cell culture system to rapidly screen MAP mutants with vaccine potential for apoptosis. Two wild-type strains, a transposon mutant, and two deletion mutant MAP strains (MOI of 10 with 1.2 × 106 CFU) were tested in murine RAW 264.7 macrophages to determine if they induce apoptosis and/or necrosis. Both deletion mutants were previously shown to be attenuated and immunogenic in primary bovine macrophages. All strains had similar growth rates, but cell morphology indicated that both deletion mutants were elongated with cell wall bulging. Cell death kinetics were followed by a real-time cellular assay to measure luminescence (apoptosis) and fluorescence (necrosis). A 6 h infection period was the appropriate time to assess apoptosis that was followed by secondary necrosis. Apoptosis was also quantified via DAPI-stained nuclear morphology and validated via flow cytometry. The combined analysis confirmed the hypothesis that candidate vaccine deletion mutants are pro-apoptotic in RAW 264.7 cells. In conclusion, the increased apoptosis seen in the deletion mutants correlates with the attenuated phenotype and immunogenicity observed in bovine macrophages, a property associated with good vaccine candidates.

10.
Vaccines (Basel) ; 10(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35455267

RESUMEN

Johne's disease affects ruminants causing an economic burden to dairy, meat and wool industries. Vaccination against Mycobacterium avium subspecies paratuberculosis (Map), which causes Johne's disease, is a primary intervention for disease control in livestock. Previously, a comprehensive, multi-institutional vaccine trial for Johne's disease was conducted to test the efficacy of live attenuated Map strains. Here, we report the humoral and cell-mediated immune responses from kid goats enrolled in that trial. Both vaccinated and unvaccinated animals showed IFN-γ stimulation and proliferation of T cell subpopulations on challenge with Map. CD4+, CD25+ and γδ cells from cultured PBMCs in the vaccinated goats showed significantly greater proliferation responses on stimulation with Map antigens. The increase in CD44+ and decrease in CD62L+ cells suggest that vaccine administration reduced the inflammatory responses associated with Map infection. Overall, a stronger antibody response was observed in the infected goats as compared to vaccinated goats. Two independent experimental approaches were used to identify differences in the antibody responses of vaccinated and unvaccinated goats. The first approach involved screening a phage expression library with pooled serum from infected goats, identifying previously reported Map antigens, including MAP_1272c and MAP_1569. However, three specific antigens detected only by vaccinated goats were also identified in the library screens. A second approach using dot blot analysis identified two additional differentially reacting proteins in the vaccinated goats (MAP_4106 and MAP_4141). These immunological results, combined with the microbiological and pathological findings obtained previously, provide a more complete picture of Johne's disease control in goats vaccinated against Map.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA