Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(7): 1617-32, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260147

RESUMEN

Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming.


Asunto(s)
Reprogramación Celular , Técnicas Citológicas/métodos , Células Madre Pluripotentes Inducidas/citología , Animales , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factores de Transcripción/metabolismo
2.
Nature ; 534(7607): 387-90, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27281218

RESUMEN

Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2(-/-) mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency.


Asunto(s)
Células Germinativas/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/citología , Células Germinativas/patología , Humanos , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , Proteínas de Unión al ARN , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
3.
Nature ; 528(7581): 218-24, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659182

RESUMEN

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.


Asunto(s)
Reprogramación Celular/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/antagonistas & inhibidores , Factor 1 de Ensamblaje de la Cromatina/genética , Regulación de la Expresión Génica/genética , Heterocromatina/metabolismo , Ratones , Nucleosomas/metabolismo , Interferencia de ARN , Transducción Genética
4.
Development ; 143(22): 4161-4166, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729406

RESUMEN

Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease.


Asunto(s)
Desarrollo Embrionario/genética , Genes Reporteros , Impresión Genómica , Inestabilidad Genómica/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Células Madre Pluripotentes/metabolismo , Animales , Proteínas de Unión al Calcio , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Femenino , Sitios Genéticos , Impresión Genómica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Oxígeno/farmacología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos
5.
Genes Dev ; 24(20): 2239-63, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952534

RESUMEN

The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Animales , Desdiferenciación Celular , Linaje de la Célula , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Células Cultivadas , Reprogramación Celular , Humanos , Modelos Biológicos , Factores de Transcripción/genética
6.
Nature ; 465(7295): 175-81, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20418860

RESUMEN

Induced pluripotent stem cells (iPSCs) have been generated by enforced expression of defined sets of transcription factors in somatic cells. It remains controversial whether iPSCs are molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells. By comparing genetically identical mouse ES cells and iPSCs, we show here that their overall messenger RNA and microRNA expression patterns are indistinguishable with the exception of a few transcripts encoded within the imprinted Dlk1-Dio3 gene cluster on chromosome 12qF1, which were aberrantly silenced in most of the iPSC clones. Consistent with a developmental role of the Dlk1-Dio3 gene cluster, these iPSC clones contributed poorly to chimaeras and failed to support the development of entirely iPSC-derived animals ('all-iPSC mice'). In contrast, iPSC clones with normal expression of the Dlk1-Dio3 cluster contributed to high-grade chimaeras and generated viable all-iPSC mice. Notably, treatment of an iPSC clone that had silenced Dlk1-Dio3 with a histone deacetylase inhibitor reactivated the locus and rescued its ability to support full-term development of all-iPSC mice. Thus, the expression state of a single imprinted gene cluster seems to distinguish most murine iPSCs from ES cells and allows for the prospective identification of iPSC clones that have the full development potential of ES cells.


Asunto(s)
Cromosomas de los Mamíferos/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Impresión Genómica/genética , Células Madre Pluripotentes/metabolismo , Animales , Proteínas de Unión al Calcio , Línea Celular , Células Madre Embrionarias/metabolismo , Epigénesis Genética/genética , Femenino , Fibroblastos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Familia de Multigenes/genética , Proteínas Nucleares/genética , Células Madre Pluripotentes/citología , Proteínas/genética , ARN Largo no Codificante , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/genética
7.
Nature ; 460(7259): 1145-8, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19668190

RESUMEN

The overexpression of defined transcription factors in somatic cells results in their reprogramming into induced pluripotent stem (iPS) cells. The extremely low efficiency and slow kinetics of in vitro reprogramming suggest that further rare events are required to generate iPS cells. The nature and identity of these events, however, remain elusive. We noticed that the reprogramming potential of primary murine fibroblasts into iPS cells decreases after serial passaging and the concomitant onset of senescence. Consistent with the notion that loss of replicative potential provides a barrier for reprogramming, here we show that cells with low endogenous p19(Arf) (encoded by the Ink4a/Arf locus, also known as Cdkn2a locus) protein levels and immortal fibroblasts deficient in components of the Arf-Trp53 pathway yield iPS cell colonies with up to threefold faster kinetics and at a significantly higher efficiency than wild-type cells, endowing almost every somatic cell with the potential to form iPS cells. Notably, the acute genetic ablation of Trp53 (also known as p53) in cellular subpopulations that normally fail to reprogram rescues their ability to produce iPS cells. Our results show that the acquisition of immortality is a crucial and rate-limiting step towards the establishment of a pluripotent state in somatic cells and underscore the similarities between induced pluripotency and tumorigenesis.


Asunto(s)
Reprogramación Celular/fisiología , Senescencia Celular/fisiología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , División Celular , Línea Celular , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Queratinocitos , Cinética , Ratones , Ratones SCID , Células Madre Pluripotentes/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Curr Biol ; 34(3): 505-518.e6, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38215744

RESUMEN

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.


Asunto(s)
Drosophila melanogaster , Hormonas Juveniles , Humanos , Ratones , Animales , Células Germinativas , Drosophila , Gónadas , Terpenos , Movimiento Celular , Mamíferos
9.
Nat Struct Mol Biol ; 31(1): 125-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38053013

RESUMEN

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Regiones Promotoras Genéticas/genética , Cromatina/genética , Linaje de la Célula/genética , Expresión Génica , Elementos de Facilitación Genéticos/genética , Mamíferos/genética
10.
Nat Methods ; 7(1): 53-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20010832
11.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37577543

RESUMEN

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.

12.
Blood ; 115(23): 4689-98, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20371744

RESUMEN

Numerous publications have described the importance of bone morphogenetic protein (BMP) signaling in the specification of hematopoietic tissue in developing embryos. Here we investigate the full role of canonical BMP signaling in both adult and fetal liver hematopoiesis using conditional knockout strategies because conventional disruption of components of the BMP signaling pathway result in early death of the embryo. By targeting both Smad1 and Smad5, we have generated a double-knockout mouse with complete disruption of canonical BMP signaling. Interestingly, concurrent deletion of Smad1 and Smad5 results in death because of extrahematopoietic pathologic changes in the colon. However, Smad1/Smad5-deficient bone marrow cells can compete normally with wild-type cells and display unaffected self-renewal and differentiation capacity when transplanted into lethally irradiated recipients. Moreover, although BMP receptor expression is increased in fetal liver, fetal liver cells deficient in both Smad1 and Smad5 remain competent to long-term reconstitute lethally irradiated recipients in a multilineage manner. In conclusion, canonical BMP signaling is not required to maintain either adult or fetal liver hematopoiesis, despite its crucial role in the initial patterning of hematopoiesis in early embryonic development.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Feto/embriología , Hematopoyesis Extramedular/fisiología , Células Madre Hematopoyéticas/metabolismo , Hígado/embriología , Transducción de Señal/fisiología , Animales , Receptores de Proteínas Morfogenéticas Óseas/biosíntesis , Receptores de Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/fisiología , Colon/embriología , Colon/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Trasplante de Células Madre Hematopoyéticas , Hígado/metabolismo , Ratones , Ratones Noqueados , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Trasplante Homólogo
13.
Blood ; 116(4): 661-70, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20363774

RESUMEN

Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Plaquetas/fisiología , Lectinas Tipo C/fisiología , Vasos Linfáticos/embriología , Vasos Linfáticos/fisiología , Fosfoproteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Células Cultivadas , Embrión de Mamíferos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Linfático/embriología , Endotelio Linfático/metabolismo , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Cell Rep ; 38(11): 110524, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294876

RESUMEN

In pluripotent cells, a delicate activation-repression balance maintains pro-differentiation genes ready for rapid activation. The identity of transcription factors (TFs) that specifically repress pro-differentiation genes remains obscure. By targeting ∼1,700 TFs with CRISPR loss-of-function screen, we found that ZBTB11 and ZFP131 are required for embryonic stem cell (ESC) pluripotency. ESCs without ZBTB11 or ZFP131 lose colony morphology, reduce proliferation rate, and upregulate transcription of genes associated with three germ layers. ZBTB11 and ZFP131 bind proximally to pro-differentiation genes. ZBTB11 or ZFP131 loss leads to an increase in H3K4me3, negative elongation factor (NELF) complex release, and concomitant transcription at associated genes. Together, our results suggest that ZBTB11 and ZFP131 maintain pluripotency by preventing premature expression of pro-differentiation genes and present a generalizable framework to maintain cellular potency.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Animales , Humanos , Ratones , Diferenciación Celular/genética , Sistemas CRISPR-Cas , Células Madre Embrionarias/metabolismo , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Curr Biol ; 18(12): 890-4, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18501604

RESUMEN

Induced pluripotent stem (iPS) cells have been derived from fibroblast, stomach, and liver cultures at extremely low frequencies by ectopic expression of the transcription factors Oct4, Sox2, c-myc, and Klf4, a process coined direct or in vitro reprogramming [1-8]. iPS cells are molecularly and functionally highly similar to embryonic stem cells (ESCs), including their ability to contribute to all tissues as well as the germline in mice. The heterogeneity of the starting cell populations and the low efficiency of reprogramming suggested that a rare cell type, such as an adult stem cell, might be the cell of origin for iPS cells and that differentiated cells are refractory to reprogramming. Here, we used inducible lentiviruses [9] to express Oct4, Sox2, c-myc, and Klf4 in pancreatic beta cells to assess whether a defined terminally differentiated cell type remains amenable to reprogramming. Genetically marked beta cells gave rise to iPS cells that expressed pluripotency markers, formed teratomas, and contributed to cell types of all germ layers in chimeric animals. Our results provide genetic proof that terminally differentiated cells can be reprogrammed into pluripotent cells, suggesting that in vitro reprogramming is not restricted to certain cell types or differentiation stages.


Asunto(s)
Diferenciación Celular/fisiología , Células Secretoras de Insulina/citología , Células Madre Pluripotentes/citología , Animales , Células Cultivadas , Quimera , Femenino , Células Secretoras de Insulina/virología , Factor 4 Similar a Kruppel , Lentivirus/genética , Lentivirus/metabolismo , Lentivirus/fisiología , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Teratoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
16.
Dev Cell ; 11(6): 845-57, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141159

RESUMEN

Hemodynamic responses that control blood pressure and the distribution of blood flow to different organs are essential for survival. Shear forces generated by blood flow regulate hemodynamic responses, but the molecular and genetic basis for such regulation is not known. The transcription factor KLF2 is activated by fluid shear stress in cultured endothelial cells, where it regulates a large number of vasoactive endothelial genes. Here, we show that Klf2 expression during development mirrors the rise of fluid shear forces, and that endothelial loss of Klf2 results in lethal embryonic heart failure due to a high-cardiac-output state. Klf2 deficiency does not result in anemia or structural vascular defects, and it can be rescued by administration of phenylephrine, a catecholamine that raises vessel tone. These findings identify Klf2 as an essential hemodynamic regulator in vivo and suggest that hemodynamic regulation in response to fluid shear stress is required for cardiovascular development and function.


Asunto(s)
Vasos Sanguíneos/fisiología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insuficiencia Cardíaca , Factores de Transcripción de Tipo Kruppel/fisiología , Anemia/fisiopatología , Animales , Malformaciones Arteriovenosas/fisiopatología , Velocidad del Flujo Sanguíneo , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Genes Letales , Integrasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Fenilefrina/farmacología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Receptor TIE-2/genética , Receptor TIE-2/fisiología , Estrés Mecánico , Transcripción Genética , Venas Umbilicales/citología , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
18.
Dev Cell ; 56(22): 3052-3065.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34710357

RESUMEN

Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.


Asunto(s)
Alelos , Proteínas de Unión al Calcio/genética , Metilación de ADN/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Animales , Cromosomas/genética , Impresión Genómica/genética , Yoduro Peroxidasa/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética
19.
Stem Cells ; 27(2): 300-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19008347

RESUMEN

Several laboratories have reported the reprogramming of mouse and human fibroblasts into pluripotent cells, using retroviruses carrying the Oct4, Sox2, Klf4, and c-Myc transcription factor genes. In these experiments the frequency of reprogramming was lower than 0.1% of the infected cells, raising the possibility that additional events are required to induce reprogramming, such as activation of genes triggered by retroviral insertions. We have therefore determined by ligation-mediated polymerase chain reaction (LM-PCR) the retroviral insertion sites in six induced pluripotent stem (iPS) cell clones derived from mouse fibroblasts. Seventy-nine insertion sites were assigned to a single mouse genome location. Thirty-five of these mapped to gene transcription units, whereas 29 insertions landed within 10 kilobases of transcription start sites. No common insertion site was detected among the iPS clones studied. Moreover, bioinformatics analyses revealed no enrichment of a specific gene function, network, or pathway among genes targeted by retroviral insertions. We conclude that Oct4, Sox2, Klf4, and c-Myc are sufficient to promote fibroblast-to-iPS cell reprogramming and propose that the observed low reprogramming frequencies may have alternative explanations.


Asunto(s)
Fibroblastos/citología , Vectores Genéticos/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Retroviridae/genética , Animales , Southern Blotting , Línea Celular , Biología Computacional , Fibroblastos/virología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/virología , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética
20.
Stem Cells ; 27(3): 543-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19096035

RESUMEN

Induced pluripotent stem (iPS) cells can be generated using retroviral vectors expressing Oct4, Klf4, Sox2, and cMyc. Most prior studies have required multiple retroviral vectors for reprogramming, resulting in high numbers of genomic integrations in iPS cells and limiting their use for therapeutic applications. Here we describe the use of a single lentiviral vector expressing a "stem cell cassette" composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology, generating iPS cells from postnatal fibroblasts. iPS cells generated in this manner display embryonic stem cell-like morphology, express stem cell markers, and exhibit in vivo pluripotency, as evidenced by their ability to differentiate in teratoma assays and their robust contribution to mouse chimeras. Combining all factors into a single transcript achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration. The use of a single lentiviral vector for reprogramming represents a powerful laboratory tool and a significant step toward the application of iPS technology for clinical purposes.


Asunto(s)
Lentivirus/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Southern Blotting , Células Cultivadas , Vectores Genéticos/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA