RESUMEN
Endometrial cancer is the second most common gynecologic cancer worldwide and the most common gynecologic cancer in the United States, with an increasing incidence in high-income countries. Although the International Federation of Gynecology and Obstetrics (FIGO) staging system for endometrial cancer is a surgical staging system, contemporary published evidence-based data and expert opinions recommend MRI for treatment planning as it provides critical diagnostic information on tumor size and depth, extent of myometrial and cervical invasion, extrauterine extent, and lymph node status, all of which are essential in choosing the most appropriate therapy. Multiparametric MRI using a combination of T2-weighted sequences, diffusion-weighted imaging, and multiphase contrast-enhanced imaging is the mainstay for imaging assessment of endometrial cancer. Identification of important prognostic factors at MRI improves both treatment selection and posttreatment follow-up. MRI also plays a crucial role for fertility-preserving strategies and in patients who are not surgical candidates by helping guide therapy and identify procedural complications. This review is a product of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease-Focused Panel and reflects a multidisciplinary international collaborative effort to summarize updated information highlighting the role of MRI for endometrial cancer depiction and delineation, treatment planning, and follow-up. The article includes information regarding dedicated MRI protocols, tips for MRI reporting, imaging pitfalls, and strategies for image quality optimization. The roles of MRI-guided radiation therapy, hybrid PET/MRI, and advanced MRI techniques that are applicable to endometrial cancer imaging are also discussed. Online supplemental material is available for this article. ©RSNA, 2022.
Asunto(s)
Neoplasias Endometriales , Neoplasias de los Genitales Femeninos , Humanos , Femenino , Estadificación de Neoplasias , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/patología , Neoplasias Endometriales/cirugía , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de los Genitales Femeninos/patologíaRESUMEN
Background: Thermoembolization presents a unique treatment alternative for patients diagnosed with hepatocellular carcinoma. The approach delivers a reagent that undergoes an exothermic chemical reaction and combines the benefits of embolic as well as thermal- and chemical-ablative therapy modalities. The target tissue and vascular bed are subjected to simultaneous hyperthermia, ischemia, and chemical denaturation in a single procedure. To guide optimal delivery, we developed a mathematical model for understanding the competing diffusive and convective effects observed in thermoembolization delivery protocols.Methods: A mixture theory formulation was used to mathematically model thermoembolization as chemically reacting transport of an electrophile, dichloroacetyl chloride (DCACl), within porous living tissue. Mass and energy transport of each relevant constituent are considered. Specifically, DCACl is injected into the vessels and exothermically reacts with water in the blood or tissue to form dichloroacetic acid and hydrochloric acid. Neutralization reactions are assumed instantaneous in this approach. We validated the mathematical model predictions of temperature using MR thermometry of the thermoembolization procedure performed in ex vivo kidney.Results: Mathematical modeling predictions of tissue death were highly dependent on the vascular geometry, injection pressure, and intrinsic amount of exothermic energy released from the chemical species, and were able to recapitulate the temperature distributions observed in MR thermometry.Conclusion: These efforts present a first step toward formalizing a mathematical model for thermoembolization and are promising for providing insight for delivery protocol optimization. While our approach captured the observed experimental temperature measurements, larger-scale experimental validation is needed to prioritize additional model complexity and fidelity.
Asunto(s)
Embolización Terapéutica/métodos , Modelos Teóricos , HumanosRESUMEN
The original article was published with an incorrect protocol number. The correct protocol number is DR07-0585.
RESUMEN
Locally advanced human papillomavirus (HPV)-associated gynecologic cancers, including cervical, vaginal, and vulvar cancers, are treated primarily with radiation therapy (RT). Cervical cancer remains a leading cause of cancer death among women worldwide. The superior soft-tissue resolution of MRI compared with other imaging modalities makes it an ideal modality for RT planning, execution, and follow-up of these malignancies. This superiority has been corroborated in the literature when comparing MRI-based RT planning to radiography-based conventional treatment planning approaches. In 2005, the Groupe Européen de Curiethérapie and the European Society for Radiation Therapy and Oncology guidelines underscored the central role of MRI for successful implementation of three-dimensional image-based cervical cancer brachytherapy. The delineation of both gross tumor volume and clinical tumor volume for brachytherapy is performed at the time of each brachytherapy application, on the basis of the findings depicted on anatomic MR images. Contemporary knowledge concerning the role of MRI for RT planning in HPV-associated gynecologic cancers warrants an understanding of the epidemiology and clinical manifestations of these cancers, as well as knowledge of MRI protocol for cancer staging, selection of RT candidates, brachytherapy implant assessment, posttreatment surveillance, and delineation of treatment-related complications. Technical requirements, patient preparation, and image acquisition protocols are detailed in this review, and imaging-based treatment protocols are summarized. Knowledge of these fundamental concepts enables the radiologist to play an important role in diagnosis, staging, and posttreatment follow-up, helping to guide radiation oncologists and other clinicians in the management of these malignancies.©RSNA, 2019.
Asunto(s)
Braquiterapia/métodos , Neoplasias de los Genitales Femeninos , Imagen por Resonancia Magnética/métodos , Infecciones por Papillomavirus , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Femenino , Neoplasias de los Genitales Femeninos/diagnóstico por imagen , Neoplasias de los Genitales Femeninos/radioterapia , Neoplasias de los Genitales Femeninos/virología , Humanos , Infecciones por Papillomavirus/diagnóstico por imagen , Infecciones por Papillomavirus/radioterapia , Infecciones por Papillomavirus/virologíaRESUMEN
Purpose: MR temperature imaging (MRTI) was employed for visualizing the spatiotemporal evolution of the exotherm of thermoembolization, an investigative transarterial treatment for solid tumors. Materials and methods: Five explanted kidneys were injected with thermoembolic solutions, and monitored by MRTI. In three nonselective experiments, 5 ml of 4 mol/l dichloroacetyl chloride (DCA-Cl) solution in a hydrocarbon vehicle was injected via the main renal artery. For two of these three, MRTI temperature data were compared to fiber optic thermal probes. Another two kidneys received selective injections, treating only portions of the kidneys with 1 ml of 2 mol/l DCA-Cl. MRTI data were acquired and compared to changes in pre- and post-injection CT. Specimens were bisected and photographed for gross pathology 24 h post-procedure. Results: MRTI temperature estimates were within ±1 °C of the probes. In experiments without probes, MRTI measured increases of 30 °C. Some regions had not reached peak temperature by the end of the >18 min acquisition. MRTI indicated the initial heating occurred in the renal cortex, gradually spreading more proximally toward the main renal artery. Gross pathology showed the nonselective injection denatured the entire kidney whereas in the selective injections, only the treated territory was coagulated. Conclusion: The spatiotemporal evolution of thermoembolization was visualized for the first time using noninvasive MRTI, providing unique insight into the thermodynamics of thermoembolization. Précis Thermoembolization is being investigated as a novel transarterial treatment. In order to begin to characterize delivery of this novel treatment modality and aid translation from the laboratory to patients, we employ MR temperature imaging to visualize the spatiotemporal distribution of temperature from thermoembolization in ex vivo tissue.
Asunto(s)
Embolización Terapéutica , Imagen por Resonancia Magnética , Termografía , Animales , Riñón/diagnóstico por imagen , Arteria Renal/diagnóstico por imagen , Porcinos , TemperaturaRESUMEN
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.
Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Modelos Animales de Enfermedad , Imagen Multimodal , Nanotecnología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Femenino , Rayos Infrarrojos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resonancia por Plasmón de SuperficieRESUMEN
We analyzed volumetric response of metastatic brain tumors that progressed despite treatment with stereotactic radiosurgery (SRS) after treatment with laser interstitial thermal therapy (LITT). We retrospectively reviewed consecutive patients treated from 1/2012 to 10/2015 with LITT for metastatic brain tumors demonstrating progression after SRS. Volumes were quantified using MRI with contrast-enhanced T1-weighted (T1W) and fluid-attenuated inversion recovery (FLAIR). Fifty lesions from 36 patients were studied. Lesions were assessed prior to LITT, immediately after LITT, 0-90 days after LITT, 90-180 days after LITT, 180-270 days after LITT, and 270-360 days after LITT. The median T1W volume was 5.05 cc (range 0.54-23.31 cc) before LITT treatment (n = 50), 7.70 cc (range 1.72-38.76 cc) 0-90 days after LITT (n = 47), and 3.68 cc (range 1.282-48.31 cc) 180-270 days after LITT (n = 21). The median FLAIR volume was 43.36 cc (range 3.09-233.01 cc) before LITT treatment (n = 50), 37.13 cc (range 3.48-244.23 cc) 0-90 days after LITT (n = 43), 31.68 cc (range 1.6-248.75 cc) 180-270 days after LITT (n = 18). The 6-month FLAIR volume showed a statistically significant reduction compared to pretreatment (p = 0.04). After selecting for cases where patients had two or more post-operative MRIs, we found that 24 lesions (63%) demonstrated an overall downward trend and 14 lesions (37%) demonstrated an upward trend. The median pre-treatment T1W volume for the patients whose lesions demonstrated volumetric reduction after LITT was 3.54 cc (range 0.539-10.06 cc) and for those who did not demonstrate volumetric reduction after LITT it was 8.81 cc (range 0.926-23.313 cc). The pre-treatment tumor volume plays a significant role in determining response to LITT with smaller tumor volumes responding better to LITT than tumors with larger volumes.
Asunto(s)
Neoplasias Encefálicas , Terapia por Láser/métodos , Radiocirugia , Adulto , Anciano , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
OBJECTIVE: To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. MATERIALS AND METHODS: Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of â¼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 µg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. RESULTS: MSCs labeled with SPIO@Au at 4 µg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. CONCLUSIONS: Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and PA imaging.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/administración & dosificación , Técnicas Fotoacústicas/métodos , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Glioma/patología , Oro/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intraarteriales , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Tamaño de la Partícula , Coloración y EtiquetadoRESUMEN
Post-treatment imaging is the principal method for evaluating thermal lesions following image-guided thermal ablation procedures. While real-time temperature feedback using magnetic resonance temperature imaging (MRTI) is a complementary tool that can be used to optimise lesion size throughout the procedure, a thermal dose model is needed to convert temperature-time histories to estimates of thermal damage. However, existing models rely on empirical parameters derived from laboratory experiments that are not direct indicators of post-treatment radiologic appearance. In this work, we investigate a technique that uses perioperative MR data to find novel thermal dose model parameters that are tailored to the appearance of the thermal lesion on post-treatment contrast-enhanced imaging. Perioperative MR data were analysed for five patients receiving magnetic resonance-guided laser-induced thermal therapy (MRgLITT) for brain metastases. The characteristic enhancing ring was manually segmented on post-treatment T1-weighted imaging and registered into the MRTI geometry. Post-treatment appearance was modelled using a coupled Arrhenius-logistic model and non-linear optimisation techniques were used to find the maximum-likelihood kinetic parameters and dose thresholds that characterise the inner and outer boundary of the enhancing ring. The parameter values and thresholds were consistent with previous investigations, while the average difference between the predicted and segmented boundaries was on the order of one pixel (1 mm). The areas predicted using the optimised model parameters were also within 1 mm of those predicted by clinically utilised dose models. This technique makes clinically acquired data available for investigating new thermal dose model parameters driven by clinically relevant endpoints.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Anciano , Femenino , Humanos , Persona de Mediana EdadRESUMEN
PURPOSE: Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent. METHODS: A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (µeff) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of µeff-ω pairs with the corresponding DSC value for each patient dataset. The µeff-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and µeff. RESULTS: When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001). CONCLUSIONS: During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.
Asunto(s)
Encéfalo/diagnóstico por imagen , Terapia por Láser/métodos , Imagen por Resonancia Magnética/métodos , Calibración , Humanos , Resultado del TratamientoRESUMEN
PURPOSE: Several methods in MRI use the phase information of the complex signal and require phase unwrapping (e.g., B0 field mapping, chemical shift imaging, and velocity measurements). In this work, an algorithm was developed focusing on the needs and requirements of MR temperature imaging applications. METHODS: The proposed method performs fully automatic unwrapping using a list of all pixels sorted by magnitude in descending order and creates and merges clusters of unwrapped pixels until the entire image is unwrapped. The algorithm was evaluated using simulated phantom data and in vivo clinical temperature imaging data. RESULTS: The evaluation of the phantom data demonstrated no errors in regions with signal-to-noise ratios of at least 4.5. For the in vivo data, the algorithm did not fail at an average of more than one pixel for signal-to-noise ratios greater than 6.3. Processing times less than 30 ms per image were achieved by unwrapping pixels inside a region of interest (53 × 53 pixels) used for referenceless MR temperature imaging. CONCLUSIONS: The algorithm has been demonstrated to operate robustly with clinical in vivo data in this study. The processing time for common regions of interest in referenceless MR temperature imaging allows for online updates of temperature maps without noticeable delay.
Asunto(s)
Algoritmos , Temperatura Corporal/fisiología , Encéfalo/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Termografía/métodos , Encéfalo/anatomía & histología , Humanos , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
PURPOSE: To assess the correlation among MR elastography (MRE) measured liver stiffness (LS), liver fibrosis, and hepatic venous pressure gradient (HVPG) in a swine model of cirrhosis. MATERIALS AND METHODS: Three swine served as controls, and liver fibrosis was induced in eight swine by transarterial embolization. LS and HVPG were obtained at baseline and 4 weeks (prenecropsy) following induction of liver fibrosis. RESULTS: Four weeks following the induction of liver cirrhosis, experimental animals developed an increase in HVPG of 8.0±6.4 mmHg compared with 0.3±1.2 mmHg for controls (P=0.08). Over the same timeframe, mean MRE-measured LS increased 0.82±0.39 kPa for experimental swine and 0.1±0.05 kPa for controls (P=0.01). A positive correlation was observed between increases in HVPG and LS (ρ=0.682; P=0.02). Liver fibrosis was measured on explanted livers at 4 weeks and yielded mean fibrosis scores of 2.8 for experimental animals and 0 for controls (P=0.0016). A positive correlation was observed between higher LS and liver fibrosis (ρ=0.884; P=0.0003). CONCLUSION: MRE is a reliable noninvasive technique to measure LS in a swine model of cirrhosis. Significant positive correlations were observed between LS and HVPG as well as LS and fibrosis.
Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática/diagnóstico , Presión Portal , Análisis de Varianza , Animales , Biopsia con Aguja , Modelos Animales de Enfermedad , Inmunohistoquímica , Cirrosis Hepática/patología , Curva ROC , Distribución Aleatoria , Valores de Referencia , Sus scrofa , PorcinosRESUMEN
PURPOSE: Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterise the spatio-temporal heating potential of these particles for use in modelling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterisation of two types of nanoparticles (gold-silica nanoshells and gold nanorods). METHODS: The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808 nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimised using a pattern search algorithm by varying the absorption coefficient of the mixture. RESULTS: Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5 °C isotherms was >0.9 over the measured time interval. CONCLUSION: This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyse a variety of geometries and particles of interest.
Asunto(s)
Imagen por Resonancia Magnética , Nanocáscaras/química , Nanotubos/química , Absorción , Algoritmos , Análisis de Elementos Finitos , Oro/química , Hipertermia Inducida , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fenómenos Ópticos , Fantasmas de Imagen , Dióxido de Silicio/química , Temperatura , Conductividad TérmicaRESUMEN
Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio > 1; r2/r1 = 1.43) and body temperature (relaxivity ratio > 1; r2/r1 = 1.38). These measurements were verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible with these novel line markers for HDR MARS for several types of cancer.
RESUMEN
Objective: The purpose of this study was to investigate the technical feasibility of integrating the quantitative maps available from SyntheticMR into the head and neck adaptive radiation oncology workflow. While SyntheticMR has been investigated for diagnostic applications, no studies have investigated its feasibility and potential for MR-Simulation or MR-Linac workflow. Demonstrating the feasibility of using this technique will facilitate rapid quantitative biomarker extraction which can be leveraged to guide adaptive radiation therapy decision making. Approach: Two phantoms, two healthy volunteers, and one patient were scanned using SyntheticMR on the MR-Simulation and MR-Linac devices with scan times between four to six minutes. Images in phantoms and volunteers were conducted in a test/retest protocol. The correlation between measured and reference quantitative T1, T2, and PD values were determined across clinical ranges in the phantom. Distortion was also studied. Contours of head and neck organs-at-risk (OAR) were drawn and applied to extract T1, T2, and PD. These values were plotted against each other, clusters were computed, and their separability significance was determined to evaluate SyntheticMR for differentiating tumor and normal tissue. Main Results: The Lin's Concordance Correlation Coefficient between the measured and phantom reference values was above 0.98 for both the MR-Sim and MR-Linac. No significant levels of distortion were measured. The mean bias between the measured and phantom reference values across repeated scans was below 4% for T1, 7% for T2, and 4% for PD for both the MR-Sim and MR-Linac. For T1 vs. T2 and T1 vs. PD, the GTV contour exhibited perfect purity against neighboring OARs while being 0.7 for T2 vs. PD. All cluster significance levels between the GTV and the nearest OAR, the tongue, using the SigClust method was p < 0.001. Significance: The technical feasibility of SyntheticMR was confirmed. Application of this technique to the head and neck adaptive radiation therapy workflow can enrich the current quantitative biomarker landscape.
RESUMEN
PURPOSE: A generalised polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided laser-induced thermal therapies (MRgLITT). METHODS: The Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n = 4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. RESULTS: Optical parameters provided the highest variance in the model output (peak standard deviation: anisotropy 3.51 °C, absorption 2.94 °C, scattering 1.84 °C, conductivity 1.43 °C, and perfusion 0.94 °C). Further, within the statistical sense considered, a non-linear model of the temperature and damage-dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. CONCLUSIONS: Given parameter uncertainties and mathematical modelling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning.
Asunto(s)
Hipertermia Inducida/métodos , Modelos Teóricos , Animales , Encéfalo , Perros , Rayos Láser , Imagen por Resonancia Magnética , Dinámicas no Lineales , Temperatura , IncertidumbreRESUMEN
Computer-aided diagnosis (CAD) systems are software programs that use algorithms to find patterns associated with breast cancer on breast magnetic resonance imaging (MRI). The most commonly used CAD systems in the USA are CADstream (CS) (Merge Healthcare Inc., Chicago, IL) and DynaCAD for Breast (DC) (Invivo, Gainesville, FL). Our primary objective in this study was to compare the CS and DC breast MRI CAD systems for diagnostic accuracy and postprocessed image quality. Our secondary objective was to compare the evaluation times of radiologists using each system. Three radiologists evaluated 30 biopsy-proven malignant lesions and 29 benign lesions on CS and DC and rated the lesions' malignancy status using the Breast Imaging Reporting and Data System. Image quality was ranked on a 0-5 scale, and mean reading times were also recorded. CS detected 70 % of the malignant and 32 % of the benign lesions while DC detected 81 % of the malignant lesions and 34 % of the benign lesions. Analysis of the area under the receiver operating characteristic curve revealed that the difference in diagnostic performance was not statistically significant. On image quality scores, CS had significantly higher volume rendering (VR) (p < 0.0001) and motion correction (MC) scores (p < 0.0001). There were no statistically significant differences in the remaining image quality scores. Differences in evaluation times between DC and CS were also not statistically significant. We conclude that both CS and DC perform similarly in aiding detection of breast cancer on MRI. MRI CAD selection will likely be based on other factors, such as user interface and image quality preferences, including MC and VR.
Asunto(s)
Neoplasias de la Mama/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mamografía/métodos , Adulto , Anciano , Área Bajo la Curva , Mama/patología , Diagnóstico Diferencial , Femenino , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto JovenRESUMEN
PURPOSE: To determine the feasibility of quantitative apparent diffusion coefficient (ADC) acquisition during magnetic resonance imaging-guided brachytherapy (MRgBT) using reduced field-of-view (rFOV) diffusion-weighted imaging (DWI). METHODS AND MATERIALS: T2-weighted (T2w) MR and full-FOV single-shot echo planar (ssEPI) DWI were acquired in 7 patients with cervical or vaginal malignancy at baseline and prior to brachytherapy, while rFOV-DWI was acquired during MRgBT following brachytherapy applicator placement. The gross target volume (GTV) was contoured on the T2w images and registered to the ADC map. Voxels at the GTV's maximum Maurer distance comprised a central sub-volume (GTVcenter). Contour ADC mean and standard deviation were compared between timepoints using repeated measures ANOVA. RESULTS: ssEPI-DWI mean ADC increased between baseline and prebrachytherapy from 1.03 ± 0.18 10-3 mm2/s to 1.34 ± 0.28 10-3 mm2/s for the GTV (pâ¯=â¯0.06) and from 0.84 ± 0.13 10-3 mm2/s to 1.26 ± 0.25 10-3 mm2/s at the level of the GTVcenter (pâ¯=â¯0.03), consistent with early treatment response. rFOV-DWI during MRgBT demonstrated mean ADC values of 1.28 ± 0.14 10-3 mm2/s and 1.28 ± 0.19 10-3 mm2/s for the GTV and GTVcenter, respectively (pâ¯=â¯0.02 and pâ¯=â¯0.03 relative to baseline). No significant differences were observed between ssEPI-DWI and rFOV-DWI ADC measurements. CONCLUSIONS: Quantitative ADC measurement in the setting of MRI guided brachytherapy implant placement for cervical and vaginal cancers is feasible using rFOV-DWI, with comparable mean ADC comparable to prebrachytherapy ssEPI-DWI, and may enable MRI-guided radiotherapy targeting of low ADC, radiation resistant sub-volumes of tumor.
Asunto(s)
Braquiterapia , Neoplasias Vaginales , Femenino , Humanos , Neoplasias Vaginales/diagnóstico por imagen , Neoplasias Vaginales/radioterapia , Braquiterapia/métodos , Estudios de Factibilidad , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los ResultadosRESUMEN
Purpose: To improve segmentation accuracy in head and neck cancer (HNC) radiotherapy treatment planning for the 1.5T hybrid magnetic resonance imaging/linear accelerator (MR-Linac), three-dimensional (3D), T2-weighted, fat-suppressed magnetic resonance imaging sequences were developed and optimized. Approach: After initial testing, spectral attenuated inversion recovery (SPAIR) was chosen as the fat suppression technique. Five candidate SPAIR sequences and a nonsuppressed, T2-weighted sequence were acquired for five HNC patients using a 1.5T MR-Linac. MR physicists identified persistent artifacts in two of the SPAIR sequences, so the remaining three SPAIR sequences were further analyzed. The gross primary tumor volume, metastatic lymph nodes, parotid glands, and pterygoid muscles were delineated using five segmentors. A robust image quality analysis platform was developed to objectively score the SPAIR sequences on the basis of qualitative and quantitative metrics. Results: Sequences were analyzed for the signal-to-noise ratio and the contrast-to-noise ratio and compared with fat and muscle, conspicuity, pairwise distance metrics, and segmentor assessments. In this analysis, the nonsuppressed sequence was inferior to each of the SPAIR sequences for the primary tumor, lymph nodes, and parotid glands, but it was superior for the pterygoid muscles. The SPAIR sequence that received the highest combined score among the analysis categories was recommended to Unity MR-Linac users for HNC radiotherapy treatment planning. Conclusions: Our study led to two developments: an optimized, 3D, T2-weighted, fat-suppressed sequence that can be disseminated to Unity MR-Linac users and a robust image quality analysis pathway that can be used to objectively score SPAIR sequences and can be customized and generalized to any image quality optimization protocol. Improved segmentation accuracy with the proposed SPAIR sequence will potentially lead to improved treatment outcomes and reduced toxicity for patients by maximizing the target coverage and minimizing the radiation exposure of organs at risk.
RESUMEN
PURPOSE: To evaluate the effects of near-infrared (NIR) laser irradiation of microspheres (MS) containing hollow gold nanospheres (HAuNS) and paclitaxel (PTX) administered intraarterially in an animal model. MATERIALS AND METHODS: For the ex vivo experiments, VX2 tumor-bearing rabbits underwent administration of MS-HAuNS or MS via the hepatic artery (HA). The animals were killed, the liver tumors were subjected to NIR irradiation, and temperature changes were estimated with magnetic resonance (MR) imaging. For the in vivo study, VX2 tumor-bearing rabbits were randomly assigned to three groups: MS-HAuNS-PTX-plus-NIR, MS-HAuNS-PTX, and saline-plus-NIR. Laser irradiation was delivered at 1 hour and at 3 days after administration of saline or MS-HAuNS-PTX via the HA. Animals were euthanized, and tumors were analyzed for necrosis and apoptosis. Plasma samples were collected from the MS-HAuNS-PTX-plus-NIR animals for PTX analysis. RESULTS: Ex vivo experiments showed intratumoral heating in animals that received MS-HAuNS but no temperature change in animals that received MS. Animals treated with MS-HAuNS-PTX-plus-NIR showed a transient increase in plasma PTX levels after each NIR irradiation and significantly greater tumor necrosis than animals that received MS-HAuNS-PTX or saline-plus-NIR (44.9% vs 13.8% or 23.7%; P < .0001). The mean apoptotic index in the MS-HAuNS-PTX-plus-NIR group (5.01 ± 1.66) was significantly higher than the mean apoptotic index in the MS-HAuNS-PTX (2.99 ± 0.97) or saline-plus-NIR (1.96 ± 0.40) groups (P = .0013). CONCLUSIONS: NIR laser irradiation after MS-HAuNS-PTX administration results in intratumoral heating and increases the efficacy of treatment. Further studies are required to evaluate the optimal laser settings to maximize therapeutic efficacy.