RESUMEN
Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.
Asunto(s)
Interferón Tipo I/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Mitocondrias/metabolismo , Células Mieloides/metabolismo , Adolescente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Niño , Preescolar , Eritroblastos/metabolismo , Eritroblastos/ultraestructura , Eritrocitos/metabolismo , Eritropoyesis , Humanos , Mitofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismoRESUMEN
OBJECTIVE: This study was undertaken to identify blood markers of juvenile dermatomyositis (DM) disease activity (DA), which are needed to improve disease management. METHODS: The study comprised a total of 123 juvenile DM patients and 53 healthy controls. Results of laboratory tests (aldolase, creatinine kinase, lactate dehydrogenase [LDH], aspartate aminotransferase) and clinical measures of DA in patients with juvenile DM, including the Manual Muscle Testing in 8 muscles (MMT-8), Childhood Myositis Assessment Scale (CMAS), and disease activity scores (DAS) (total DAS for juvenile DM, the muscle DAS, and the skin DAS), were recorded when available. Surface phenotype of peripheral blood mononuclear cells was assessed using flow cytometry. Whole blood transcriptional profiles were studied using either RNA-sequencing or microarrays. Differential gene expression was determined using DESeq and compared by pathway and gene ontology analyses. RESULTS: Conventional memory (CD27+IgD-) B cells expressing low CXCR5 levels (CXCR5low/- CM B cells) were significantly increased in frequency and absolute numbers in 2 independent cohorts of juvenile DM patients compared with healthy controls. The frequency of CD4+ Th2 memory cells (CD45RA-CXCR5-CCR6-CXCR3-) was also increased in juvenile DM, especially in patients who were within <1 year from diagnosis. The frequency of CXCR5low/- CM B cells correlated with serum aldolase levels and with a blood interferon-stimulated gene transcriptional signature. Furthermore, both the frequency and absolute numbers of CXCR5low/- CM B cells correlated with clinical and laboratory measures of muscle DA (MMT-8, CMAS, aldolase, and LDH). CONCLUSION: These findings suggest that both CM B cells lacking the CXCR5 follicular marker and CXCR5- Th2 cells represent potential biomarkers of DA in juvenile DM and may contribute to its pathogenesis.
Asunto(s)
Dermatomiositis , Humanos , Dermatomiositis/metabolismo , Leucocitos Mononucleares , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Aldehído-Liasas/metabolismoRESUMEN
The roles of many environmental contaminants in increasing breast cancer risk remain controversial. Arsenic (As) is a major global environmental contaminant and carcinogen. We conducted a systematic review of the role of As and gene-arsenic interactions in susceptibility to breast cancer. Following a systematic literature search using well-defined inclusion/exclusion criteria, a total of 15 epidemiologic studies (two meta-analyses, three systematic reviews, three cohort studies, two case-control studies, and five cross-sectional studies) were reviewed. In addition, several animal, in vitro, in vivo, and in silico (i.e., computer modeling) studies provided mechanistic insights into the association between As and breast cancer. Our review suggests a possible overall main effect of As on breast cancer risk. The evidence for an effect of gene-As interactions on breast cancer risk is strong. Studies that measured levels of As metabolites among participants and/or evaluated interactions between As exposure and genetic or epigenetic factors generally reported positive associations with breast cancer risk. Our analysis of the Comparative Toxicogenomics and the Ingenuity Pathway Analysis Databases provided further evidence for As-gene interactions and their effects on breast cancer-related biologic pathways. Our findings provide potential leads for future epidemiologic studies of As-associated cancer risks and interventions to reduce population exposure.
Asunto(s)
Arsénico , Neoplasias de la Mama , Arsénico/análisis , Arsénico/toxicidad , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Carcinógenos , Estudios Transversales , Estudios Epidemiológicos , Femenino , HumanosRESUMEN
Up to 30% of all breast cancer cases may be inherited and up to 85% of those may be due to segregation of susceptibility genes with low and moderate risk [odds ratios (OR) ≤ 3] for (mostly peri- and post-menopausal) breast cancer. The majority of low/moderate-risk genes, particularly those with minor allele frequencies (MAF) of < 30%, have not been identified and/or validated due to limitations of conventional association testing approaches, which include the agnostic nature of Genome Wide Association Studies (GWAS). To overcome these limitations, we used a hypothesis-driven integrative genomics approach to test the association of breast cancer with candidate genes by analyzing multi-omics data. Our candidate-gene association analyses of GWAS datasets suggested an increased risk of breast cancer with ERCC6 (main effect: 1.29 ≤ OR ≤ 2.91, 0.005 ≤ p ≤ 0.04, 11.8 ≤ MAF ≤ 40.9%), and implicated its interaction with ERCC8 (joint effect: 3.03 ≤ OR ≤ 5.31, 0.01 ≤ pinteraction ≤ 0.03). We found significant upregulation of ERCC6 (p = 7.95 × 10-6) and ERCC8 (p = 4.67 × 10-6) in breast cancer and similar frequencies of ERCC6 (1.8%) and ERCC8 (0.3%) mutations in breast tumors to known breast cancer susceptibility genes such as BLM (1.9%) and LSP1 (0.3%). Our integrative genomics approach suggests that ERCC6 may be a previously unreported low- to moderate-risk breast cancer susceptibility gene, which may also interact with ERCC8.
Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Factores de Transcripción/genética , Femenino , Estudio de Asociación del Genoma Completo , HumanosRESUMEN
INTRODUCTION: The information content of multiparametric flow cytometry experiments is routinely underexploited given the paucity of adequate tools for unbiased comprehensive data analysis that can be applied successfully and independently by immunologists without computational training. METHODS: We aimed to develop a tool that allows straightforward access to the entire information content of any given flow cytometry panel for immunologists without special computational expertise. We used a data analysis approach which accounts for all mathematically possible combinations of markers in a given panel, coded the algorithm and applied the method to mined and self-generated data sets. RESULTS: We developed Flow Plex, a straightforward computational tool that allows unrestricted access to the information content of a given flow cytometry panel, enables classification of human samples according to distinct immune phenotypes, such as different forms of autoimmune uveitis, acute myeloid leukemia vs "healthy", "old" vs "young", and facilitates the identification of cell populations with potential biologic relevance to states of disease and health. CONCLUSIONS: We provide a tool that allows immunologists and other flow cytometry users with limited bioinformatics skills to extract comprehensive, unbiased information from flow cytometry data sets.
Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Leucemia Mieloide/patología , Leucocitos Mononucleares/citología , Enfermedad Aguda , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Células Cultivadas , Niño , Análisis por Conglomerados , Femenino , Humanos , Leucemia Mieloide/clasificación , Leucocitos Mononucleares/clasificación , Masculino , Persona de Mediana Edad , FenotipoRESUMEN
Particle-mediated DNA delivery technologies ("gene guns") have been shown in both animal and clinical studies to be an effective means of increasing the immunogenicity and protective efficacy of DNA vaccines. The primary goal in optimizing particle-mediated epidermal delivery (PMED) vaccination in different animal models is to achieve delivery of DNA-coated gold beads into the viable epidermis. Two key para-meters that influence this outcome include the delivery pressure, which controls the penetrative force of the beads into the skin, and the anatomical site of DNA delivery. Although the ferret has been extensively used as an experimental model for influenza infection in humans, very few studies have investigated the capacity for PMED DNA vaccination to induce protective immune responses in ferrets. Here we describe methods to optimize DNA vaccine delivery using the PowderJect XR1 gene delivery in ferrets. We first assess the effects of firing pressure on both the delivery of DNA-coated gold beads into the desired epidermal layer and the degree of DNA vaccine reporter gene expression at the target site. Second, we evaluate the impact of vaccination site (skin or tongue) on DNA vaccine immunogenicity by measuring serum antibody responses to the model antigens influenza virus hemagglutinin and hepatitis B core antigen. Results from these studies support the use of the PowderJect XR1 device in ferrets for the study of prophylactic and therapeutic DNA vaccines against clinically important diseases such as influenza virus infection.
Asunto(s)
Biolística/instrumentación , Epidermis/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Epidermis/metabolismo , Hurones , Genes Reporteros/genética , Pruebas de Inhibición de Hemaglutinación , Antígenos del Núcleo de la Hepatitis B/inmunología , Inmunización , Masculino , Vacunas de ADN/genética , Vacunas Virales/genética , beta-Galactosidasa/genéticaRESUMEN
Given the limited success of clinical HIV vaccine trials, new vaccine strategies are needed for the HIV pipeline. The present study explored the novel concept that a live enteric virus, with limited disease potential, is a suitable vaccine vector to elicit HIV-specific immune responses in the gut mucosa of immunized mice. Two coxsackievirus B4 (CVB4) vaccine vectors were designed to induce HIV-specific B or T cell responses. A B cell immunogen, CVB4/gp41(2F5), was constructed by expressing an epitope from the membrane proximal external region (MPER) of gp41 as a structural peptide within a surface loop of a capsid protein of CVB4. The T cell immunogen, CVB4/p24(73(3)), was constructed previously by expressing a gag p24 sequence as a non-structural peptide at the amino-terminus of the CVB4 polyprotein. The CVB4/gp41(2F5) recombinant was antigenic in mice and elicited anti-gp41 antibodies in both the mucosal and systemic compartments. The route of immunization affected the antibody response since oral delivery of CVB4/gp41(2F5) induced anti-gp41 antibodies in the mucosal but not in the systemic compartment while parenteral delivery induced anti-gp41 antibodies in both compartments. In contrast, oral immunization with CVB4/p24(73(3)) elicited both mucosal and systemic gag p24-specific T cell responses. Since coxsackieviruses are ubiquitous in the human population, a key question is whether pre-existing vector immunity will inhibit the ability of a CVB4-based vaccine to induce HIV-specific immune responses. We show that pre-existing vector immunity did not preclude the development of mucosal anti-gp41 antibodies or gag p24-specific T cell responses after oral immunization with the CVB4/HIV recombinants. We suggest that the CVB4/HIV recombinants have the potential to be a viable vaccine product because of ease of delivery, safety, immunogenicity, ease of large-scale production, and storage conditions requiring cold-chain temperatures provided by refrigeration.
Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Portadores de Fármacos , Enterovirus Humano B/genética , Vectores Genéticos , Inmunidad Mucosa , Linfocitos T/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Administración Oral , Animales , Enterovirus Humano B/inmunología , Femenino , Anticuerpos Anti-VIH/inmunología , Proteína p24 del Núcleo del VIH/genética , Proteína p24 del Núcleo del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunologíaRESUMEN
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.
Asunto(s)
Vacunas contra el SIDA/farmacología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Vacunas contra el SIDAS/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas de ADN/microbiología , Síndrome de Inmunodeficiencia Adquirida/inmunología , Animales , Inmunización/métodos , Interferón gamma/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunologíaRESUMEN
BACKGROUND: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99) HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun) was analyzed in rhesus macaques. METHODOLOGY/PRINCIPAL FINDINGS: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI) antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. CONCLUSIONS/SIGNIFICANCE: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.