Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 559(7712): 73-76, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973733

RESUMEN

Einstein's theory of gravity-the general theory of relativity1-is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity2, the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies3,4 are limited by the weak self-gravity of the bodies, and tests using pulsar-white-dwarf binaries5,6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10-6. For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests3,4 and a factor of almost a thousand smaller than that obtained from other strong-field tests5,6.

2.
Living Rev Relativ ; 6(1): 5, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-28163640

RESUMEN

Pulsars of very different types, including isolated objects and binaries (with short- and long-period orbits, and white-dwarf and neutron-star companions) provide the means to test both the predictions of general relativity and the viability of alternate theories of gravity. This article presents an overview of pulsars, then discusses the current status of and future prospects for tests of equivalence-principle violations and strong-field gravitational experiments.

3.
Science ; 340(6131): 448, 1233232, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23620056

RESUMEN

Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

4.
Science ; 324(5933): 1411-4, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19460964

RESUMEN

Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the past decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.

5.
Science ; 321(5885): 104-7, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18599782

RESUMEN

The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

6.
Science ; 320(5881): 1309-12, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18483399

RESUMEN

Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

7.
Science ; 311(5769): 1901-4, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16410486

RESUMEN

We have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (approximately 40% of the orbit), suggests that even faster spinning neutron stars exist. If the pulsar has a mass less than twice the mass of the Sun, then its radius must be constrained by the spin rate to be <16 kilometers. The short period of this pulsar also constrains models that suggest that gravitational radiation, through an r-mode (Rossby wave) instability, limits the maximum spin frequency of neutron stars.

8.
Science ; 307(5711): 892-6, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15653465

RESUMEN

We have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits. The relativistic periastron advance for the two eccentric systems indicates that at least one of these pulsars has a mass 1.68 times greater than the mass of the Sun at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond the nuclear equilibrium density.

9.
Science ; 304(5670): 547-52, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-15105492

RESUMEN

Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

10.
Science ; 301(5630): 193-6, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12855802

RESUMEN

The pulsar B1620-26 has two companions, one of stellar mass and one of planetary mass. We detected the stellar companion with the use of Hubble Space Telescope observations. The color and magnitude of the stellar companion indicate that it is an undermassive white dwarf (0.34 +/- 0.04 solar mass) of age 480 x 10(6) +/- 140 x 10(6) years. This places a constraint on the recent history of this triple system and supports a scenario in which the current configuration arose through a dynamical exchange interaction in the cluster core. This implies that planets may be relatively common in low-metallicity globular clusters and that planet formation is more widespread and has happened earlier than previously believed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA