Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 40(16): e102509, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34155658

RESUMEN

The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.


Asunto(s)
Ubiquitina Tiolesterasa/genética , Apoptosis , Estrés del Retículo Endoplásmico/genética , Células HCT116 , Humanos , Complejo Mediador/genética , Regiones Promotoras Genéticas , ARN Polimerasa II , Transcripción Genética
2.
PLoS Genet ; 18(6): e1010268, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687614

RESUMEN

R-loops are three-stranded nucleotide structures consisting of a DNA:RNA hybrid and a displaced ssDNA non-template strand. Previous work suggests that R-loop formation is primarily determined by the thermodynamics of DNA:RNA binding, which are governed by base composition (e.g., GC skew) and transcription-induced DNA superhelicity. However, R-loops have been described at genomic locations that lack these properties, suggesting that they may serve other context-specific roles. To better understand the genetic determinants of R-loop formation, we have characterized the Drosophila melanogaster R-loop landscape across strains and between sexes using DNA:RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq). We find that R-loops are associated with sequence motifs that are G-rich or exhibit G/C skew, as well as highly expressed genes, tRNAs, and small nuclear RNAs, consistent with a role for DNA sequence and torsion in R-loop specification. However, we also find motifs associated with R-loops that are A/T-rich and lack G/C skew as well as a subset of R-loops that are enriched in polycomb-repressed chromatin. Differential enrichment analysis reveals a small number of sex-biased R-loops: while non-differentially enriched and male-enriched R-loops form at similar genetic features and chromatin states and contain similar sequence motifs, female-enriched R-loops form at unique genetic features, chromatin states, and sequence motifs and are associated with genes that show ovary-biased expression. Male-enriched R-loops are most abundant on the dosage-compensated X chromosome, where R-loops appear stronger compared to autosomal R-loops. R-loop-containing genes on the X chromosome are dosage-compensated yet show lower MOF binding and reduced H4K16ac compared to R-loop-absent genes, suggesting that H4K16ac or MOF may attenuate R-loop formation. Collectively, these results suggest that R-loop formation in vivo is not fully explained by DNA sequence and topology and raise the possibility that a distinct subset of these hybrid structures plays an important role in the establishment and maintenance of epigenetic differences between sexes.


Asunto(s)
Drosophila melanogaster , Estructuras R-Loop , Animales , Cromatina/genética , ADN/genética , Drosophila melanogaster/genética , Femenino , Masculino , ARN/genética
3.
Proc Natl Acad Sci U S A ; 115(40): E9298-E9307, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224477

RESUMEN

Overexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex. Challenging the dogma, we report here a nontranscriptional role for USP22 via a direct effect on the core cell cycle machinery: that is, the deubiquitylation of the G1 cyclin D1 (CCND1). Deubiquitylation by USP22 protects CCND1 from proteasome-mediated degradation and occurs separately from the canonical phosphorylation/ubiquitylation mechanism previously shown to regulate CCND1 stability. We demonstrate that control of CCND1 is a key mechanism by which USP22 mediates its known role in cell cycle progression. Finally, USP22 and CCND1 levels correlate in patient lung and colorectal cancer samples and our preclinical studies indicate that targeting USP22 in combination with CDK inhibitors may offer an approach for treating cancer patients whose tumors exhibit elevated CCND1.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Ciclina D1/metabolismo , Epigénesis Genética , Fase G1 , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Proteolisis , Tioléster Hidrolasas/metabolismo , Ubiquitinación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ciclina D1/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Células MCF-7 , Estabilidad Proteica , Tioléster Hidrolasas/genética , Ubiquitina Tiolesterasa
4.
J Biol Chem ; 288(33): 24234-46, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23760504

RESUMEN

Pluripotent embryonic stem cells (ESCs) undergo self-renewal until stimulated to differentiate along specific lineage pathways. Many of the transcriptional networks that drive reprogramming of a self-renewing ESC to a differentiating cell have been identified. However, fundamental questions remain unanswered about the epigenetic programs that control these changes in gene expression. Here we report that the histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is a critical epigenetic modifier that controls this transition from self-renewal to differentiation. USP22 is induced as ESCs differentiate and is necessary for differentiation into all three germ layers. We further report that USP22 is a transcriptional repressor of the locus encoding the core pluripotency factor sex-determining region Y-box 2 (SOX2) in ESCs, and this repression is required for efficient differentiation. USP22 occupies the Sox2 promoter and hydrolyzes monoubiquitin from ubiquitylated histone H2B and blocks transcription of the Sox2 locus. Our study reveals an epigenetic mechanism that represses the core pluripotency transcriptional network in ESCs, allowing ESCs to transition from a state of self-renewal into lineage-specific differentiation programs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endopeptidasas/metabolismo , Epigénesis Genética , Factores de Transcripción SOXB1/genética , Transcripción Genética , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Línea Celular , Proliferación Celular , Endopeptidasas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos/genética , Histonas/metabolismo , Ratones , Fenotipo , Células Madre Pluripotentes/metabolismo , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/metabolismo , Sirtuina 1/metabolismo , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
5.
J Biol Chem ; 286(6): 4264-70, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21148320

RESUMEN

In unstressed cells, the p53 tumor suppressor is highly unstable. DNA damage and other forms of cellular stress rapidly stabilize and activate p53. This process is regulated by a complex array of post-translational modifications that are dynamically deposited onto p53. Recent studies show that these modifications orchestrate p53-mediated processes such as cell cycle arrest and apoptosis. Cancer cells carry inherent genetic damage, but avoid arrest and apoptosis by inactivating p53. Defining the enzymatic machinery that regulates the stress-induced modification of p53 at single-residue resolution is critical to our understanding of the biochemical mechanisms that control this critical tumor suppressor. Specifically, acetylation of p53 at lysine 120, a DNA-binding domain residue mutated in human cancer, is essential for triggering apoptosis. Given the oncogenic properties of deacetylases and the success of deacetylase inhibitors as anticancer agents, we investigated the regulation of Lys(120) deacetylation using pharmacologic and genetic approaches. This analysis revealed that histone deacetylase 1 is predominantly responsible for the deacetylation of Lys(120). Furthermore, treatment with the clinical-grade histone deacetylase inhibitor entinostat enhances Lys(120) acetylation, an event that is mechanistically linked to its apoptotic effect. These data expand our understanding of the mechanisms controlling p53 function and suggest that regulation of p53 modification status at single-residue resolution by targeted therapeutics can selectively alter p53 pathway function. This knowledge may impact the rational application of deacetylase inhibitors in the treatment of human cancer.


Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor/metabolismo , Acetilación/efectos de los fármacos , Benzamidas/farmacología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Mutación Missense , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Estructura Terciaria de Proteína , Piridinas/farmacología , Proteína p53 Supresora de Tumor/genética
6.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34954189

RESUMEN

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Carcinogénesis/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorrectales/patología , Humanos , Ligandos , Región de Control de Posición , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Cancer Res ; 80(3): 430-443, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740444

RESUMEN

Emerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, in vivo characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions in vitro demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression. Accordingly, upon overexpression or depletion of USP22, enrichment of cell-cycle and DNA repair pathways was observed in the USP22-sensitive transcriptome and ubiquitylome using prostate cancer models of clinical relevance. Depletion of USP22 sensitized cells to genotoxic insult, and the role of USP22 in response to genotoxic insult was further confirmed using mouse adult fibroblasts from the novel murine model of USP22 expression. As it was hypothesized that USP22 deubiquitylates target substrates to promote protumorigenic phenotypes, analysis of the USP22-sensitive ubiquitylome identified the nucleotide excision repair protein, XPC, as a critical mediator of the USP22-mediated response to genotoxic insult. Thus, XPC undergoes deubiquitylation as a result of USP22 function and promotes USP22-mediated survival to DNA damage. Combined, these findings reveal unexpected functions of USP22 as a driver of protumorigenic phenotypes and have significant implications for the role of USP22 in therapeutic outcomes. SIGNIFICANCE: The studies herein present a novel mouse model of tumor-associated USP22 overexpression and implicate USP22 in modulation of cellular survival and DNA repair, in part through regulation of XPC.


Asunto(s)
Carcinogénesis/patología , Proliferación Celular , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/patología , Ubiquitina Tiolesterasa/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Ubiquitina Tiolesterasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Res ; 74(1): 272-86, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24197134

RESUMEN

Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Tioléster Hidrolasas/metabolismo , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Androgénicos/metabolismo , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética , Ubiquitina Tiolesterasa
9.
J Clin Invest ; 122(3): 833-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22307325

RESUMEN

Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1) is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation. Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1 back to Ccnd1(-/-) mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNA-bound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aberrations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1-rescued cells by spectral karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with acute and continuous mammary gland-targeted cyclin D1 expression. These transgenic mice presented with increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a transcriptional program that governs chromosomal stability.


Asunto(s)
Inestabilidad Cromosómica , Ciclina D1/genética , Animales , Sitios de Unión , Neoplasias de la Mama/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Aberraciones Cromosómicas , Femenino , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Cariotipificación , Ratones , Ratones Transgénicos , Transcripción Genética
10.
Mol Cell Biol ; 31(24): 5037-45, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21986497

RESUMEN

Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed "intrinsic tumor suppressor activity," and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.


Asunto(s)
Apoptosis/genética , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes myc , Factores de Transcripción/metabolismo , Animales , Western Blotting , División Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Femenino , Sitios Genéticos , Humanos , Ratones , Ratones Noqueados , Plásmidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética
11.
J Biol Chem ; 284(30): 20197-205, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19494119

RESUMEN

The tumor suppressor p53 induces apoptosis by altering the transcription of pro-apoptotic targets in the nucleus and by a direct, nontranscriptional role at the mitochondria. Although the post-translational modifications regulating nuclear apoptotic functions of p53 have been thoroughly characterized, little is known of how transcription-independent functions are controlled. We and others identified acetylation of the p53 DNA binding domain at lysine 120 as a critical event in apoptosis induction. Although initial studies showed that Lys-120 acetylation plays a role in p53 function in the nucleus, we report here a role for Lys-120 acetylation in transcription-independent apoptosis. We demonstrate that the Lys-120-acetylated isoform of p53 is enriched at mitochondria. The acetylation of Lys-120 does not appear to regulate the ability of p53 to interact with the pro-apoptotic proteins BCL-XL and BAK. However, displacement of the inhibitory MCL-1 protein from BAK is compromised when Lys-120 acetylation is blocked. Functional studies show that mutation of Lys-120 to a nonacetylated residue, as occurs in human cancer, inhibits transcription-independent apoptosis, and enforced acetylation of Lys-120 enhances transcription-independent apoptosis. These data support a model whereby Lys-120 acetylation contributes to both the transcription-dependent and -independent apoptotic pathways induced by p53.


Asunto(s)
Apoptosis , Lisina/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Sitios de Unión , Línea Celular Tumoral , ADN/metabolismo , Humanos , Lisina/análisis , Lisina/genética , Mitocondrias/química , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Mutación Puntual , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA