Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38769007

RESUMEN

Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.


Asunto(s)
Nivel de Alerta , Hemodinámica , Red Nerviosa , Animales , Nivel de Alerta/fisiología , Ratones , Masculino , Femenino , Hemodinámica/fisiología , Red Nerviosa/fisiología , Corteza Cerebral/fisiología , Ratones Endogámicos C57BL
2.
J Neurosci ; 42(13): 2701-2715, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35135855

RESUMEN

Lateralization is a hallmark of somatosensory processing in the mammalian brain. However, in addition to their contralateral representation, unilateral tactile stimuli also modulate neuronal activity in somatosensory cortices of the ipsilateral hemisphere. The cellular organization and functional role of these ipsilateral stimulus responses in awake somatosensory cortices, especially regarding stimulus coding, are unknown. Here, we targeted silicon probe recordings to the vibrissa region of primary (S1) and secondary (S2) somatosensory cortex of awake head-fixed mice of either sex while delivering ipsilateral and contralateral whisker stimuli. Ipsilateral stimuli drove larger and more reliable responses in S2 than in S1, and activated a larger fraction of stimulus-responsive neurons. Ipsilateral stimulus-responsive neurons were rare in layer 4 of S1, but were located in equal proportion across all layers in S2. Linear classifier analyses further revealed that decoding of the ipsilateral stimulus was more accurate in S2 than S1, whereas S1 decoded contralateral stimuli most accurately. These results reveal substantial encoding of ipsilateral stimuli in S1 and especially S2, consistent with the hypothesis that higher cortical areas may integrate tactile inputs across larger portions of space, spanning both sides of the body.SIGNIFICANCE STATEMENT Tactile information obtained by one side of the body is represented in the activity of neurons of the opposite brain hemisphere. However, unilateral tactile stimulation also modulates neuronal activity in the other, or ipsilateral, brain hemisphere. This ipsilateral activity may play an important role in the representation and processing of tactile information, in particular when the sense of touch involves both sides of the body. Our work in the whisker system of awake mice reveals that neocortical ipsilateral activity, in particular that of deep layer excitatory neurons of secondary somatosensory cortex (S2), contains information about the presence and the velocity of unilateral tactile stimuli, which supports a key role for S2 in integrating tactile information across both body sides.


Asunto(s)
Corteza Somatosensorial , Percepción del Tacto , Animales , Mamíferos , Ratones , Corteza Somatosensorial/fisiología , Tacto/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Vigilia
3.
J Neurosci ; 41(25): 5421-5439, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33986072

RESUMEN

Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vigilia/fisiología , Animales , Femenino , Masculino , Ratones , Vibrisas/fisiología
4.
J Neurophysiol ; 125(5): 1833-1850, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33760642

RESUMEN

Sensory signals from the outside world are transduced at the periphery, passing through thalamus before reaching cortex, ultimately giving rise to the sensory representations that enable us to perceive the world. The thalamocortical circuit is particularly sensitive to the temporal precision of thalamic spiking due to highly convergent synaptic connectivity. Thalamic neurons can exhibit burst and tonic modes of firing that strongly influence timing within the thalamus. The impact of these changes in thalamic state on sensory encoding in the cortex, however, remains unclear. Here, we investigated the role of thalamic state on timing in the thalamocortical circuit of the vibrissa pathway in the anesthetized rat. We optogenetically hyperpolarized thalamus while recording single unit activity in both thalamus and cortex. Tonic spike-triggered analysis revealed temporally precise thalamic spiking that was locked to weak white-noise sensory stimuli, whereas thalamic burst spiking was associated with a loss in stimulus-locked temporal precision. These thalamic state-dependent changes propagated to cortex such that the cortical timing precision was diminished during the hyperpolarized (burst biased) thalamic state. Although still sensory driven, the cortical neurons became significantly less precisely locked to the weak white-noise stimulus. The results here suggests a state-dependent differential regulation of spike timing precision in the thalamus that could gate what signals are ultimately propagated to cortex.NEW & NOTEWORTHY The majority of sensory signals are transmitted through the thalamus. There is growing evidence of complex thalamic gating through coordinated firing modes that have a strong impact on cortical sensory representations. Optogenetic hyperpolarization of thalamus pushed it into burst firing that disrupted precise time-locked sensory signaling, with a direct impact on the downstream cortical encoding, setting the stage for a timing-based thalamic gate of sensory signaling.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Animales , Electrocorticografía , Femenino , Vías Nerviosas/fisiología , Optogenética , Estimulación Física , Ratas , Ratas Sprague-Dawley
5.
J Neurophysiol ; 125(6): 2408-2431, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978507

RESUMEN

As the tools to simultaneously record electrophysiological signals from large numbers of neurons within and across brain regions become increasingly available, this opens up for the first time the possibility of establishing the details of causal relationships between monosynaptically connected neurons and the patterns of neural activation that underlie perception and behavior. Although recorded activity across synaptically connected neurons has served as the cornerstone for much of what we know about synaptic transmission and plasticity, this has largely been relegated to ex vivo preparations that enable precise targeting under relatively well-controlled conditions. Analogous studies in vivo, where image-guided targeting is often not yet possible, rely on indirect, data-driven measures, and as a result such studies have been sparse and the dependence upon important experimental parameters has not been well studied. Here, using in vivo extracellular single-unit recordings in the topographically aligned rodent thalamocortical pathway, we sought to establish a general experimental and computational framework for inferring synaptic connectivity. Specifically, attacking this problem within a statistical signal detection framework utilizing experimentally recorded data in the ventral-posterior medial (VPm) region of the thalamus and the homologous region in layer 4 of primary somatosensory cortex (S1) revealed a trade-off between network activity levels needed for the data-driven inference and synchronization of nearby neurons within the population that results in masking of synaptic relationships. Here, we provide a framework for establishing connectivity in multisite, multielectrode recordings based on statistical inference, setting the stage for large-scale assessment of synaptic connectivity within and across brain structures.NEW & NOTEWORTHY Despite the fact that all brain function relies on the long-range transfer of information across different regions, the tools enabling us to measure connectivity across brain structures are lacking. Here, we provide a statistical framework for identifying and assessing potential monosynaptic connectivity across neuronal circuits from population spiking activity that generalizes to large-scale recording technologies that will help us to better understand the signaling within networks that underlies perception and behavior.


Asunto(s)
Potenciales Evocados/fisiología , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiología , Animales , Estimulación Eléctrica , Electrocorticografía , Femenino , Masculino , Ratones Endogámicos C57BL , Imagen Óptica , Ratas , Ratas Sprague-Dawley , Vibrisas/fisiología
6.
J Neurosci ; 39(6): 1088-1099, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30530858

RESUMEN

Behavioral adaptation is a prerequisite for survival in a constantly changing sensory environment, but the underlying strategies and relevant variables driving adaptive behavior are not well understood. Many learning models and neural theories consider probabilistic computations as an efficient way to solve a variety of tasks, especially if uncertainty is involved. Although this suggests a possible role for probabilistic inference and expectation in adaptive behaviors, there is little if any evidence of this relationship experimentally. Here, we investigated adaptive behavior in the rat model by using a well controlled behavioral paradigm within a psychophysical framework to predict and quantify changes in performance of animals trained on a simple whisker-based detection task. The sensory environment of the task was changed by transforming the probabilistic distribution of whisker deflection amplitudes systematically while measuring the animal's detection performance and corresponding rate of accumulated reward. We show that the psychometric function deviates significantly and reversibly depending on the probabilistic distribution of stimuli. This change in performance relates to accumulating a constant reward count across trials, yet it is exempt from changes in reward volume. Our simple model of reward accumulation captures the observed change in psychometric sensitivity and predicts a strategy seeking to maintain reward expectation across trials in the face of the changing stimulus distribution. We conclude that rats are able maintain a constant payoff under changing sensory conditions by flexibly adjusting their behavioral strategy. Our findings suggest the existence of an internal probabilistic model that facilitates behavioral adaptation when sensory demands change.SIGNIFICANCE STATEMENT The strategy animals use to deal with a complex and ever-changing world is a key to understanding natural behavior. This study provides evidence that rodent behavioral performance is highly flexible in the face of a changing stimulus distribution, consistent with a strategy to maintain a desired accumulation of reward.


Asunto(s)
Adaptación Psicológica/fisiología , Desempeño Psicomotor/fisiología , Recompensa , Tacto/fisiología , Animales , Condicionamiento Operante/fisiología , Femenino , Estimulación Física , Psicofísica , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción , Vibrisas/inervación , Vibrisas/fisiología
7.
PLoS Comput Biol ; 15(5): e1006716, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31150385

RESUMEN

Cortical responses to sensory inputs vary across repeated presentations of identical stimuli, but how this trial-to-trial variability impacts detection of sensory inputs is not fully understood. Using multi-channel local field potential (LFP) recordings in primary somatosensory cortex (S1) of the awake mouse, we optimized a data-driven cortical state classifier to predict single-trial sensory-evoked responses, based on features of the spontaneous, ongoing LFP recorded across cortical layers. Our findings show that, by utilizing an ongoing prediction of the sensory response generated by this state classifier, an ideal observer improves overall detection accuracy and generates robust detection of sensory inputs across various states of ongoing cortical activity in the awake brain, which could have implications for variability in the performance of detection tasks across brain states.


Asunto(s)
Biología Computacional/métodos , Corteza Somatosensorial/fisiología , Vigilia/fisiología , Animales , Encéfalo/fisiología , Exactitud de los Datos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Reproducibilidad de los Resultados
8.
Nano Lett ; 19(3): 1577-1586, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30798604

RESUMEN

Soft and magnetic resonance imaging (MRI) compatible neural electrodes enable stable chronic electrophysiological measurements and anatomical or functional MRI studies of the entire brain without electrode interference with MRI images. These properties are important for many studies, ranging from a fundamental neurophysiological study of functional MRI signals to a chronic neuromodulatory effect investigation of therapeutic deep brain stimulation. Here we develop soft and MRI compatible neural electrodes using carbon nanotube (CNT) fibers with a diameter from 20 µm down to 5 µm. The CNT fiber electrodes demonstrate excellent interfacial electrochemical properties and greatly reduced MRI artifacts than PtIr electrodes under a 7.0 T MRI scanner. With a shuttle-assisted implantation strategy, we show that the soft CNT fiber electrodes can precisely target specific brain regions and record high-quality single-unit neural signals. Significantly, they are capable of continuously detecting and isolating single neuronal units from rats for up to 4-5 months without electrode repositioning, with greatly reduced brain inflammatory responses as compared to their stiff metal counterparts. In addition, we show that due to their high tensile strength, the CNT fiber electrodes can be retracted controllably postinsertion, which provides an effective and convenient way to do multidepth recording or potentially selecting cells with particular response properties. The chronic recording stability and MRI compatibility, together with their small size, provide the CNT fiber electrodes unique research capabilities for both basic and applied neuroscience studies.

9.
J Neurosci ; 38(21): 4870-4885, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29703788

RESUMEN

Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm; the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related variables that are predictive of actual decisions. The first reflects task engagement on a local scale ("trial history": defined as the decisions and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale ("satiation": slow dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus, is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.SIGNIFICANCE STATEMENT It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session) are reflected.


Asunto(s)
Cognición/fisiología , Detección de Señal Psicológica/fisiología , Tálamo/fisiología , Tacto/fisiología , Algoritmos , Animales , Fenómenos Biomecánicos/fisiología , Mapeo Encefálico , Toma de Decisiones/fisiología , Femenino , Modelos Lineales , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/fisiología , Vibrisas/inervación , Vibrisas/fisiología
10.
J Neurophysiol ; 117(1): 163-177, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760816

RESUMEN

Sensory stimulation drives complex interactions across neural circuits as information is encoded and then transmitted from one brain region to the next. In the highly interconnected thalamocortical circuit, these complex interactions elicit repeatable neural dynamics in response to temporal patterns of stimuli that provide insight into the circuit properties that generated them. Here, using a combination of in vivo voltage-sensitive dye (VSD) imaging of cortex, single-unit recording in thalamus, and optogenetics to manipulate thalamic state in the rodent vibrissa pathway, we probed the thalamocortical circuit with simple temporal patterns of stimuli delivered either to the whiskers on the face (sensory stimulation) or to the thalamus directly via electrical or optogenetic inputs (artificial stimulation). VSD imaging of cortex in response to whisker stimulation revealed classical suppressive dynamics, while artificial stimulation of thalamus produced an additional facilitation dynamic in cortex not observed with sensory stimulation. Thalamic neurons showed enhanced bursting activity in response to artificial stimulation, suggesting that bursting dynamics may underlie the facilitation mechanism we observed in cortex. To test this experimentally, we directly depolarized the thalamus, using optogenetic modulation of the firing activity to shift from a burst to a tonic mode. In the optogenetically depolarized thalamic state, the cortical facilitation dynamic was completely abolished. Together, the results obtained here from simple probes suggest that thalamic state, and ultimately thalamic bursting, may play a key role in shaping more complex stimulus-evoked dynamics in the thalamocortical pathway. NEW & NOTEWORTHY: For the first time, we have been able to utilize optogenetic modulation of thalamic firing modes combined with optical imaging of cortex in the rat vibrissa system to directly test the role of thalamic state in shaping cortical response properties.


Asunto(s)
Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Análisis de Varianza , Animales , Channelrhodopsins , Estimulación Eléctrica , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Dinámicas no Lineales , Optogenética , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Transducción Genética , Vibrisas/inervación , Imagen de Colorante Sensible al Voltaje , Proteína Fluorescente Roja
11.
J Neurosci ; 35(47): 15702-15, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26609162

RESUMEN

Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. SIGNIFICANCE STATEMENT: Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing.


Asunto(s)
Red Nerviosa/fisiología , Redes Neurales de la Computación , Optogenética/métodos , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Animales , Estimulación Eléctrica/métodos , Femenino , Ratas , Ratas Sprague-Dawley
12.
J Neurophysiol ; 115(5): 2456-69, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26864758

RESUMEN

A central assertion in the study of neural processing is that our perception of the environment directly reflects the activity of our sensory neurons. This assertion reinforces the intuition that the strength of a sensory input directly modulates the amount of neural activity observed in response to that sensory feature: an increase in the strength of the input yields a graded increase in the amount of neural activity. However, cortical activity across a range of sensory pathways can be sparse, with individual neurons having remarkably low firing rates, often exhibiting suprathreshold activity on only a fraction of experimental trials. To compensate for this observed apparent unreliability, it is assumed that instead the local population of neurons, although not explicitly measured, does reliably represent the strength of the sensory input. This assumption, however, is largely untested. In this study, using wide-field voltage-sensitive dye (VSD) imaging of the somatosensory cortex in the anesthetized rat, we show that whisker deflection velocity, or stimulus strength, is not encoded by the magnitude of the population response at the level of cortex. Instead, modulation of whisker deflection velocity affects the likelihood of the cortical response, impacting the magnitude, rate of change, and spatial extent of the cortical response. An ideal observer analysis of the cortical response points to a probabilistic code based on repeated sampling across cortical columns and/or time, which we refer to as the probability of activation hypothesis. This hypothesis motivates a range of testable predictions for both future electrophysiological and future behavioral studies.


Asunto(s)
Potenciales Evocados Somatosensoriales , Corteza Somatosensorial/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Interpretación Estadística de Datos , Femenino , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/citología , Vibrisas/inervación , Imagen de Colorante Sensible al Voltaje/normas
13.
Eur J Neurosci ; 43(3): 474-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26370722

RESUMEN

Despite significant advances in robotics, commercially advanced prosthetics provide only a small fraction of the functionality of the amputated limb that they are meant to replace. Peripheral nerve interfacing could provide a rich controlling link between the body and these advanced prosthetics in order to increase their overall utility. Here, we report on the development of a fully integrated regenerative microchannel interface with 30 microelectrodes and signal extraction capabilities enabling evaluation in an awake and ambulatory rat animal model. In vitro functional testing validated the capability of the microelectrodes to record neural signals similar in size and nature to those that occur in vivo. In vitro dorsal root ganglia cultures revealed striking cytocompatibility of the microchannel interface. Finally, in vivo, the microchannel interface was successfully used to record a multitude of single-unit action potentials through 63% of the integrated microelectrodes at the early time point of 3 weeks. This marks a significant advance in microchannel interfacing, demonstrating the capability of microchannels to be used for peripheral nerve interfacing.


Asunto(s)
Potenciales de Acción , Electrofisiología/métodos , Vigilia , Amplificadores Electrónicos , Animales , Células Cultivadas , Electrofisiología/instrumentación , Ganglios Espinales/fisiología , Microelectrodos , Nervios Periféricos/fisiología , Ratas
14.
J Neurophysiol ; 113(10): 3850-65, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25787959

RESUMEN

One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts.


Asunto(s)
Adaptación Fisiológica/fisiología , Vías Aferentes/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Vibrisas/inervación , Potenciales de Acción/fisiología , Animales , Mapeo Encefálico , Imagen Óptica , Estimulación Física , Ratas , Detección de Señal Psicológica , Imagen de Colorante Sensible al Voltaje
15.
PLoS Comput Biol ; 10(1): e1003418, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415930

RESUMEN

In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization.


Asunto(s)
Corteza Cerebral/fisiología , Modelos Neurológicos , Neuronas/metabolismo , Tálamo/fisiología , Corteza Visual/fisiología , Algoritmos , Animales , Gatos , Simulación por Computador , Fenómenos Electrofisiológicos , Cuerpos Geniculados/fisiología , Masculino , Inhibición Neural/fisiología , Neuronas/fisiología , Distribución Normal , Probabilidad , Vías Visuales/fisiología
16.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37503253

RESUMEN

The feedback projections from cortical layer 6 (L6CT) to sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventro-posterior-medial nucleus of thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.

17.
J Neural Eng ; 21(1)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232377

RESUMEN

Objective.Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation.Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments.Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data.Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Fenómenos Electrofisiológicos , Aprendizaje Automático , Programas Informáticos
18.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895263

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the striatum, predominantly associated with motor symptoms. However, non-motor deficits, particularly sensory symptoms, often precede motor manifestations, offering a potential early diagnostic window. The impact of non-motor deficits on sensation behavior and the underlying mechanisms remains poorly understood. In this study, we examined changes in tactile sensation within a Parkinsonian state by employing a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) to deplete striatal dopamine (DA). Leveraging the conserved mouse whisker system as a model for tactile-sensory stimulation, we conducted psychophysical experiments to assess sensory-driven behavioral performance during a tactile detection task in both the healthy and Parkinson-like states. Our findings reveal that DA depletion induces pronounced alterations in tactile sensation behavior, extending beyond expected motor impairments. We observed diverse behavioral deficits, spanning detection performance, task engagement, and reward accumulation, among lesioned individuals. While subjects with extreme DA depletion consistently showed severe sensory behavioral deficits, others with substantial DA depletion displayed minimal changes in sensory behavior performance. Moreover, some exhibited moderate degradation of behavioral performance, likely stemming from sensory signaling loss rather than motor impairment. The implementation of a sensory detection task is a promising approach to quantify the extent of impairments associated with DA depletion in the animal model. This facilitates the exploration of early non-motor deficits in PD, emphasizing the importance of incorporating sensory assessments in understanding the diverse spectrum of PD symptoms.

19.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895470

RESUMEN

Numerous studies have shown that neuronal representations in sensory pathways are far from static but are instead strongly shaped by the complex properties of the sensory inputs they receive. Adaptation dynamically shapes the neural signaling that underlies our perception of the world, yet remains poorly understood. We investigated rapid adaptation across timescales from hundreds of milliseconds to seconds through simultaneous multi-electrode recordings from the ventro-posteromedial nucleus of the thalamus (VPm) and layer 4 of the primary somatosensory cortex (S1) in anesthetized mice in response to controlled, persistent whisker stimulation. Observations in VPm and S1 reveal a degree of adaptation that progresses through the pathway. Signatures of two distinct timescales of rapid adaptation in the firing rates of both thalamic and cortical neuronal populations were revealed, also reflected in the synchrony of the thalamic population and in the thalamocortical synaptic efficacy that was measured in putatively monosynaptically connected thalamocortical pairs. Controlled optogenetic activation of VPm further demonstrated that the longer timescale adaptation observed in S1 is likely inherited from slow decreases in thalamic firing rate and synchrony. Despite the degraded sensory responses, adaptation resulted in a shift in coding strategy that favors theoretical discrimination over detection across the observed timescales of adaptation. Overall, although multiple mechanisms contribute to rapid adaptation at distinct timescales, they support a unifying framework on the role of adaptation in sensory processing.

20.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664415

RESUMEN

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Asunto(s)
Optogenética , Corteza Somatosensorial , Tálamo , Vibrisas , Vigilia , Animales , Vigilia/fisiología , Corteza Somatosensorial/fisiología , Ratones , Tálamo/fisiología , Vibrisas/fisiología , Neuronas/fisiología , Masculino , Vías Nerviosas/fisiología , Núcleos Talámicos Ventrales/fisiología , Potenciales de Acción/fisiología , Femenino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA