Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Genomics ; 7: 325, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17192196

RESUMEN

BACKGROUND: Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. RESULTS: We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. CONCLUSION: Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility.


Asunto(s)
Empalme Alternativo , Neoplasias del Colon/genética , Expresión Génica , Algoritmos , Exones , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Genome Biol ; 8(4): R64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17456239

RESUMEN

BACKGROUND: Higher eukaryotes express a diverse population of messenger RNAs generated by alternative splicing. Large-scale methods for monitoring gene expression must adapt in order to accurately detect the transcript variation generated by this splicing. RESULTS: We have designed a high-density oligonucleotide microarray with probesets for more than one million annotated and predicted exons in the human genome. Using these arrays and a simple algorithm that normalizes exon signal to signal from the gene as a whole, we have identified tissue-specific exons from a panel of 16 different normal adult tissues. RT-PCR validation confirms approximately 86% of the predicted tissue-enriched probesets. Pair-wise comparisons between the tissues suggest that as many as 73% of detected genes are differentially alternatively spliced. We also demonstrate how an inclusive exon microarray can be used to discover novel alternative splicing events. As examples, 17 new tissue-specific exons from 11 genes were validated by RT-PCR and sequencing. CONCLUSION: In conjunction with a conceptually simple algorithm, comprehensive exon microarrays can detect tissue-specific alternative splicing events. Our data suggest significant expression outside of known exons and well annotated genes and a high frequency of alternative splicing events. In addition, we identified and validated a number of novel exons with tissue-specific splicing patterns. The tissue map data will likely serve as a valuable source of information on the regulation of alternative splicing.


Asunto(s)
Empalme Alternativo , Exones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Algoritmos , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/metabolismo
3.
Genome Res ; 17(8): 1210-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17671095

RESUMEN

Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals. A number of novel alternative splicing events with no previous annotations in either the RefSeq and EST databases were identified, indicating that we are able to discover de novo splicing events. Using family-based linkage analysis, we demonstrate Mendelian inheritance and segregation of specific splice isoforms with regulatory haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association was further used to identify individual SNPs or regulatory haplotype blocks linked to the alternative splicing event, taking advantage of the high-resolution genotype information from the CEPH HapMap population. In one candidate, we identified a regulatory polymorphism that disrupts a 5' splice site of an exon in the CAST gene, resulting in its exclusion in the mutant allele. This report illustrates that our approach can detect both annotated and novel alternatively spliced variants, and that such variation among individuals is heritable and genetically controlled.


Asunto(s)
Empalme Alternativo , Genoma Humano , Secuencia de Bases , Línea Celular , Exones , Humanos , Patrón de Herencia , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
4.
Proc Natl Acad Sci U S A ; 99(18): 11830-5, 2002 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12189211

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in older individuals worldwide. The disease is characterized by abnormal extracellular deposits, known as drusen, that accumulate along the basal surface of the retinal pigmented epithelium. Although drusen deposition is common in older individuals, large numbers of drusen and/or extensive areas of confluent drusen represent a significant risk factor for AMD. Widespread drusen deposition is associated with retinal pigmented epithelial cell dysfunction and degeneration of the photoreceptor cells of the neural retina. Recent studies have shown that drusen contain a variety of immunomodulatory molecules, suggesting that the process of drusen formation involves local inflammatory events, including activation of the complement cascade. Similar observations in Alzheimer's disease (AD) have lead to the hypothesis that chronic localized inflammation is an important element of AD pathogenesis, with significant neurodegenerative consequences. Accordingly, the amyloid beta (A beta) peptide, a major constituent of neuritic plaques in AD, has been implicated as a primary activator of complement in AD. Here we show that A beta is associated with a substructural vesicular component within drusen. A beta colocalizes with activated complement components in these "amyloid vesicles," thereby identifying them as potential primary sites of complement activation. Thus, A beta deposition could be an important component of the local inflammatory events that contribute to atrophy of the retinal pigmented epithelium, drusen biogenesis, and the pathogenesis of AMD.


Asunto(s)
Envejecimiento/patología , Péptidos beta-Amiloides/metabolismo , Activación de Complemento , Degeneración Macular/patología , Anciano , Anciano de 80 o más Años , Envejecimiento/inmunología , Envejecimiento/metabolismo , Péptidos beta-Amiloides/fisiología , Secuencia de Bases , Activación de Complemento/fisiología , Cartilla de ADN , Humanos , Inmunohistoquímica , Degeneración Macular/inmunología , Degeneración Macular/metabolismo , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA