Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Spine ; 2: 101666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506292

RESUMEN

•Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation.•In cervical spine analysis, the biomechanical features are most often studied using finiteelement models.•The application of artificial neural networks and support vector machine models looks promising for classification purposes.•This article provides an overview of the methods for research on computer aided imaging diagnostics of the cervical spine.

2.
Med Phys ; 41(2): 021905, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24506626

RESUMEN

PURPOSE: Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. METHODS: Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. RESULTS: The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linearity assumption relating lung volume change with density change was shown to hold (fitR(2) = 0.94), and globalized versions of the local models are consistent with global results (R(2) of 0.865 and 0.882 for the two adapted slope models, respectively). CONCLUSIONS: In conclusion, image matching and subsequent analysis of differences according to the proposed lung models (i) has good local registration accuracy on patient data, (ii) effectively eliminates a dependency on inspiration level at acquisition time, (iii) accurately predicts progression in phantom data, and (iv) is reasonably consistent with global results in patient data. It is therefore a potential future tool for assessing local emphysema progression in drug evaluation trials and in clinical practice.


Asunto(s)
Progresión de la Enfermedad , Enfisema Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Enfisema Pulmonar/patología , Enfisema Pulmonar/fisiopatología , Respiración
3.
Med Phys ; 40(12): 121904, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24320515

RESUMEN

PURPOSE: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. METHODS: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA∕stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration. RESULTS: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. CONCLUSIONS: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.


Asunto(s)
Arterias Carótidas , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Automatización , Humanos , Movimiento
4.
Med Image Anal ; 15(1): 71-84, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20709592

RESUMEN

Quantitative evaluation of image registration algorithms is a difficult and under-addressed issue due to the lack of a reference standard in most registration problems. In this work a method is presented whereby detailed reference standard data may be constructed in an efficient semi-automatic fashion. A well-distributed set of n landmarks is detected fully automatically in one scan of a pair to be registered. Using a custom-designed interface, observers define corresponding anatomic locations in the second scan for a specified subset of s of these landmarks. The remaining n-s landmarks are matched fully automatically by a thin-plate-spline based system using the s manual landmark correspondences to model the relationship between the scans. The method is applied to 47 pairs of temporal thoracic CT scans, three pairs of brain MR scans and five thoracic CT datasets with synthetic deformations. Interobserver differences are used to demonstrate the accuracy of the matched points. The utility of the reference standard data as a tool in evaluating registration is shown by the comparison of six sets of registration results on the 47 pairs of thoracic CT data.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Anciano , Encefalopatías/diagnóstico , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas , Radiografía Torácica , Estándares de Referencia , Reproducibilidad de los Resultados , Interfaz Usuario-Computador
5.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 1006-13, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18982703

RESUMEN

An algorithm is presented for the efficient semi-automatic construction of a detailed reference standard for registration in thoracic CT. A well-distributed set of 100 landmarks is detected fully automatically in one scan of a pair to be registered. Using a custom-designed interface, observers locate corresponding anatomic locations in the second scan. The manual annotations are used to learn the relationship between the scans and after approximately twenty manual marks the remaining points are matched automatically. Inter-observer differences demonstrate the accuracy of the matching and the applicability of the reference standard is demonstrated on two different sets of registration results over 19 CT scan pairs.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA