Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer ; 13: 242, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25344208

RESUMEN

BACKGROUND: Cetuximab, an anti-EGFR monoclonal antibody, is used to treat several cancers. However, many patients who initially respond to cetuximab acquire resistance. To examine mechanisms of acquired resistance, we developed a series of cetuximab-resistant (Ctx(R)) clones derived from the cetuximab sensitive (CtxS) non-small cell lung cancer (NSCLC) cell line H226. Previous studies characterizing this model revealed that: 1) EGFR was robustly overexpressed in Ctx(R) clones due to decreased EGFR ubiquitination and degradation and 2) Ctx(R) clones expressed increased HER2 and HER3 activation resulting in constitutive activation of the PI3K/AKT signaling axis. These findings suggest that dual targeting HER family receptors would be highly beneficial in the Ctx(R) setting. RESULTS: Since HER3 has been implicated in resistance to EGFR inhibitors, the efficacy of dually targeting both EGFR and HER3 in Ctx(R) models was evaluated. First, EGFR and HER3 expression were knocked down with siRNAs. Compared to the Ctx(S) parental cell line (HP), all Ctx(R) clones exhibited robust decreases in cell proliferation upon dual knockdown. Analysis of Ctx(R) clones indicated that neuregulin-1 was highly overexpressed compared to HP cells. Incubation of HP cells with neuregulin-1 rendered them resistant to cetuximab. Next, dual treatment of Ctx(R) clones with cetuximab and the HER3 neutralizing monoclonal antibody (mAb) U3-1287 led to potent anti-proliferative effects. Blockade of EGFR with cetuximab resulted in inactivation of MAPK, while blockade of HER3 with U3-1287 resulted in the inactivation of AKT. Treatment with both mAbs resulted in knockdown of both signaling pathways simultaneously. HER2 was also strongly inactivated upon dual mAb therapy, suggesting that this treatment regimen can diminish signaling from three HER family receptors. De novo CtxR H226 mouse xenografts were established to determine if dual therapy could overcome acquired resistance to cetuximab in vivo. Tumors that had acquired resistance to cetuximab were significantly growth delayed upon dual treatment of U3-1287 and cetuximab compared to those continued on cetuximab only. Combinatorial-treated xenograft tumors expressed decreased Ki67 and increased cleaved caspase-3 levels compared to tumors treated with either monotherapy. CONCLUSIONS: These studies demonstrate that dually targeting HER family receptors with antibody-based therapies can overcome acquired resistance to cetuximab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor ErbB-3/metabolismo , Animales , Anticuerpos Neutralizantes , Antineoplásicos/uso terapéutico , Anticuerpos ampliamente neutralizantes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
PLoS One ; 8(8): e71518, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951180

RESUMEN

Nuclear localized HER family receptor tyrosine kinases (RTKs) have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3) have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined. The current study aimed to map the putative transactivation domains (TADs) of the HER3 receptor. To accomplish this goal, various intracellular regions of HER3 were fused to the DNA binding domain of the yeast transcription factor Gal4 (Gal4DBD) and tested for their ability to transactivate Gal4 UAS-luciferase. Results from these analyses demonstrated that the C-terminal domain of HER3 (CTD, amino acids distal to the tyrosine kinase domain) contained potent transactivation potential. Next, nine HER3-CTD truncation mutants were constructed to map minimal regions of transactivation potential using the Gal4 UAS-luciferase based system. These analyses identified a bipartite region of 34 (B1) and 27 (B2) amino acids in length that conferred the majority of HER3's transactivation potential. Next, we identified full-length nuclear HER3 association and regulation of a 122 bp region of the cyclin D1 promoter. To understand how the B1 and B2 regions influenced the transcriptional functions of nuclear HER3, we performed cyclin D1 promoter-luciferase assays in which HER3 deleted of the B1 and B2 regions was severely hindered in regulating this promoter. Further, the overexpression of HER3 enhanced cyclin D1 mRNA expression, while HER3 deleted of its identified TADs was hindered at doing so. Thus, the ability for HER3 to function as a transcriptional co-activator may be dependent on specific C-terminal TADs.


Asunto(s)
Receptor ErbB-3/análisis , Receptor ErbB-3/metabolismo , Activación Transcripcional , Línea Celular , Núcleo Celular/ultraestructura , Ciclina D1/análisis , Ciclina D1/genética , Humanos , Mutación , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína
4.
Radiother Oncol ; 108(3): 370-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23830194

RESUMEN

The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell's nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Celecoxib , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/fisiología , Humanos , Antígeno Nuclear de Célula en Proliferación/fisiología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirazoles/farmacología , Tolerancia a Radiación , Sulfonamidas/farmacología
5.
Cancer Biol Ther ; 14(6): 481-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23760490

RESUMEN

The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for use in oncology. Despite clinical success the majority of patients do not respond to cetuximab and those who initially respond frequently acquire resistance. To understand how tumor cells acquire resistance to cetuximab we developed a model of resistance using the non-small cell lung cancer line NCI-H226. We found that cetuximab-resistant (Ctx (R) ) clones manifested strong activation of EGFR, PI3K/AKT and MAPK. To investigate the role of AKT signaling in cetuximab resistance we analyzed the activation of the AKT pathway effector molecules using a human AKT phospho-antibody array. Strong activation was observed in Ctx (R) clones for several key AKT substrates including c-jun, GSK3ß, eIF4E, rpS6, IKKα, IRS-1 and Raf1. Inhibition of AKT signaling by siAKT1/2 or by the allosteric AKT inhibitor MK-2206 resulted in robust inhibition of cell proliferation in all Ctx (R) clones. Moreover, the combinational treatment of cetuximab and MK-2206 resulted in further decreases in proliferation than either drug alone. This combinatorial treatment resulted in decreased activity of both AKT and MAPK thus highlighting the importance of simultaneous pathway inhibition to maximally affect the growth of Ctx (R) cells. Collectively, our findings demonstrate that AKT activation is an important pathway in acquired resistance to cetuximab and suggests that combinatorial therapy directed at both the AKT and EGFR/MAPK pathways may be beneficial in this setting.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Regulación Alostérica , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab , Evaluación Preclínica de Medicamentos , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Neoplasia ; 15(10): 1196-206, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204198

RESUMEN

The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (Ctx(R)) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for Ctx(R) tumor cells. Sym004 treatment of Ctx(R) clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo Ctx(R) NCI-H226 mouse xenografts and subsequently treated Ctx(R) tumors with Sym004. Sym004 treatment of mice harboring Ctx(R) tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in Ctx(R) tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for Ctx(R) tumors.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab , Receptores ErbB/metabolismo , Xenoinjertos , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA