Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Physiol ; 196(1): 164-180, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38820200

RESUMEN

Global nighttime temperatures are rising at twice the rate of daytime temperatures and pose a challenge for rice (Oryza sativa) production. High nighttime temperature (HNT) stress affects rice yield by reducing grain weight, size, and fertility. Although the genes associated with these yield parameters have been identified and characterized under normal temperatures, the genetic basis of grain weight regulation under HNT stress remains less explored. We examined the natural variation for rice single grain weight (SGW) under HNT stress imposed during grain development. A genome-wide association analysis identified several loci associated with grain weight under HNT stress. A locus, SGW1, specific to HNT conditions resolved to LONELY GUY-Like 1 (LOGL1), which encodes a putative cytokinin-activation enzyme. We demonstrated that LOGL1 contributes to allelic variation at SGW1. Accessions with lower LOGL1 transcript abundance had higher grain weight under HNT. This was supported by the higher grain weight of logl1-mutants relative to the wild type under HNT. Compared to logl1-mutants, LOGL1 over-expressers showed increased sensitivity to HNT. We showed that LOGL1 regulates the thiamin biosynthesis pathway, which is under circadian regulation, which in turn is likely perturbed by HNT stress. These findings provide a genetic source to enhance rice adaptation to warming night temperatures and improve our mechanistic understanding of HNT stress tolerance pathways.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica de las Plantas , Variación Genética
2.
Plant J ; 115(2): 470-479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37036146

RESUMEN

Chemical inhibitors are often implemented for the functional characterization of genes to overcome the limitations associated with genetic approaches. Although it is well established that the specificity of the compound is key to success of a pharmacological approach, off-target effects are often overlooked or simply neglected in a complex biological setting. Here we illustrate the cause and implications of such secondary effects by focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H) that is frequently used to investigate the involvement of lignin during plant growth and development. When supplied to plants, we found that PA is recognized as a substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the formation of the indole-3-acetic acid (IAA) conjugate IAA-Asp. By competing for the same enzyme, PA interferes with IAA conjugation, resulting in an increase in IAA concentrations in the plant. In line with the broad substrate specificity of the GH3 family of enzymes, treatment with PA increased not only IAA levels but also those of other GH3-conjugated phytohormones, namely jasmonic acid and salicylic acid. Finally, we found that interference with the endogenous function of GH3s potentially contributes to phenotypes previously observed upon PA treatment. We conclude that deregulation of phytohormone homeostasis by surrogate occupation of the conjugation machinery in the plant is likely a general phenomenon when using chemical inhibitors. Our results hereby provide a novel and important basis for future reference in studies using chemical inhibitors.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/farmacología , Benzoatos , Oxigenasas de Función Mixta/genética , Cinamatos/farmacología , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 235(1): 263-275, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322877

RESUMEN

Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Salinidad , Agua/metabolismo
4.
New Phytol ; 229(1): 335-350, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858766

RESUMEN

A higher minimum (night-time) temperature is considered a greater limiting factor for reduced rice yield than a similar increase in maximum (daytime) temperature. While the physiological impact of high night temperature (HNT) has been studied, the genetic and molecular basis of HNT stress response remains unexplored. We examined the phenotypic variation for mature grain size (length and width) in a diverse set of rice accessions under HNT stress. Genome-wide association analysis identified several HNT-specific loci regulating grain size as well as loci that are common for optimal and HNT stress conditions. A novel locus contributing to grain width under HNT conditions colocalized with Fie1, a component of the FIS-PRC2 complex. Our results suggest that the allelic difference controlling grain width under HNT is a result of differential transcript-level response of Fie1 in grains developing under HNT stress. We present evidence to support the role of Fie1 in grain size regulation by testing overexpression (OE) and knockout mutants under heat stress. The OE mutants were either unaltered or had a positive impact on mature grain size under HNT, while the knockouts exhibited significant grain size reduction under these conditions.


Asunto(s)
Oryza , Grano Comestible/genética , Endospermo/genética , Fertilización , Estudio de Asociación del Genoma Completo , Oryza/genética , Temperatura
5.
Plant Physiol ; 182(2): 933-948, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818903

RESUMEN

MADS box transcription factors (TFs) are subdivided into type I and II based on phylogenetic analysis. The type II TFs regulate floral organ identity and flowering time, but type I TFs are relatively less characterized. Here, we report the functional characterization of two type I MADS box TFs in rice (Oryza sativa), MADS78 and MADS79 Transcript abundance of both these genes in developing seed peaked at 48 h after fertilization and was suppressed by 96 h after fertilization, corresponding to syncytial and cellularized stages of endosperm development, respectively. Seeds overexpressing MADS78 and MADS 79 exhibited delayed endosperm cellularization, while CRISPR-Cas9-mediated single knockout mutants showed precocious endosperm cellularization. MADS78 and MADS 79 were indispensable for seed development, as a double knockout mutant failed to make viable seeds. Both MADS78 and 79 interacted with MADS89, another type I MADS box, which enhances nuclear localization. The expression analysis of Fie1, a rice FERTILIZATION-INDEPENDENT SEED-POLYCOMB REPRESSOR COMPLEX2 component, in MADS78 and 79 mutants and vice versa established an antithetical relation, suggesting that Fie1 could be involved in negative regulation of MADS78 and MADS 79 Misregulation of MADS78 and MADS 79 perturbed auxin homeostasis and carbon metabolism, as evident by misregulation of genes involved in auxin transport and signaling as well as starch biosynthesis genes causing structural abnormalities in starch granules at maturity. Collectively, we show that MADS78 and MADS 79 are essential regulators of early seed developmental transition and impact both seed size and quality in rice.


Asunto(s)
Endospermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/metabolismo , Oryza/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Núcleo Celular/metabolismo , Endospermo/genética , Endospermo/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/metabolismo , Proteínas de Dominio MADS/genética , Microscopía Electrónica de Rastreo , Oryza/genética , Oryza/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Proteínas del Grupo Polycomb/metabolismo , RNA-Seq , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Factores de Transcripción/metabolismo , Regulación hacia Arriba
6.
Plant Cell Environ ; 44(8): 2604-2624, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34036580

RESUMEN

A transient heat stress occurring during early seed development in rice (Oryza sativa) reduces seed size by altering endosperm development. However, the relationship between the timing of the stress and specific developmental stage on heat sensitivity is not well-understood. To address this, we imposed a series of non-overlapping heat stress treatments and found that young seeds are most sensitive during the first two days after flowering. Temporal transcriptome analysis of developing, heat stressed (35°C) seeds during this window shows that Inositol-requiring enzyme 1 (IRE1)-mediated endoplasmic reticulum (ER) stress response and jasmonic acid (JA) pathways are the early (1-3 h) drivers of heat stress response. We propose that increased JA levels under heat stress may precede ER stress response as JA application promotes the spliced form of OsbZIP50, an ER response marker gene linked to IRE1-specific pathway. This study presents temporal and mechanistic insights into the role of JA and ER stress signalling during early heat stress response of rice seeds that impact both grain size and quality. Modulating the heat sensitivity of the early sensing pathways and downstream endosperm development genes can enhance rice resilience to transient heat stress events.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/fisiología , Oryza/fisiología , Semillas/fisiología , Acetatos/farmacología , Ciclo Celular/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Endospermo/genética , Oryza/efectos de los fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
7.
Plant Biotechnol J ; 18(9): 1955-1968, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32031318

RESUMEN

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.


Asunto(s)
Agropyron , Triticum , Agropyron/genética , Deshidratación , Sequías , Genes de Plantas , Humanos , Triticum/genética , Agua
8.
Proc Natl Acad Sci U S A ; 113(39): 11016-21, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27651491

RESUMEN

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Dioxigenasas/metabolismo , Genes de Plantas , Homeostasis , Ácidos Indolacéticos/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Metabolómica , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Fenotipo , Filogenia , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo
9.
Plant Physiol ; 169(2): 1371-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282239

RESUMEN

Glutathione (GSH) is essential for many aspects of plant biology and is associated with jasmonate signaling in stress responses. We characterized an Arabidopsis (Arabidopsis thaliana) jasmonate-hypersensitive mutant (jah2) with seedling root growth 100-fold more sensitive to inhibition by the hormone jasmonyl-isoleucine than the wild type. Genetic mapping and genome sequencing determined that the mutation is in intron 6 of GLUTATHIONE SYNTHETASE2, encoding the enzyme that converts γ-glutamylcysteine (γ-EC) to GSH. The level of GSH in jah2 was 71% of the wild type, while the phytoalexin-deficient2-1 (pad2-1) mutant, defective in GSH1 and having only 27% of wild-type GSH level, was not jasmonate hypersensitive. Growth defects for jah2, but not pad2, were also seen in plants grown to maturity. Surprisingly, all phenotypes in the jah2 pad2-1 double mutant were weaker than in jah2. Quantification of γ-EC indicated these defects result from hyperaccumulation of this GSH precursor by 294- and 65-fold in jah2 and the double mutant, respectively. γ-EC reportedly partially substitutes for loss of GSH, but growth inhibition seen here was likely not due to an excess of total glutathione plus γ-EC because their sum in jah2 pad2-1 was only 16% greater than in the wild type. Further, the jah2 phenotypes were lost in a jasmonic acid biosynthesis mutant background, indicating the effect of γ-EC is mediated through jasmonate signaling and not as a direct result of perturbed redox status.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Dipéptidos/metabolismo , Mutación , Oxilipinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Oxilipinas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
10.
Plant Cell Environ ; 39(11): 2515-2529, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27451106

RESUMEN

Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought.


Asunto(s)
Arabidopsis/fisiología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/farmacología , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Ciclopentanos/metabolismo , Deshidratación/genética , Genes de Plantas , Oxilipinas/metabolismo , Transducción de Señal , Transcriptoma
11.
J Exp Bot ; 67(7): 2107-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26672615

RESUMEN

Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized three IAH members, ILR1, ILL6, and IAR3, for their function in JA and IAA metabolism and signaling. Expression of all three genes in leaves was up-regulated by wounding or JA, but not by IAA. Purified recombinant proteins showed overlapping but distinct substrate specificities for diverse amino acid conjugates of JA and IAA. Perturbed patterns of the endogenous JA profile in plants overexpressing or knocked-out for the three genes were consistent with ILL6 and IAR3, but not ILR1, being the JA amidohydrolases. Increased turnover of JA-Ile in the ILL6- and IAR3-overexpressing plants created symptoms of JA deficiency whereas increased free IAA by overexpression of ILR1 and IAR3 made plants hypersensitive to exogenous IAA conjugates. Surprisingly, ILL6 overexpression rendered plants highly resistant to exogenous IAA conjugates, indicating its interference with IAA conjugate hydrolysis. Fluorescent protein-tagged IAR3 and ILL6 co-localized with the endoplasmic reticulum-localized JA-Ile 12-hydroxylase, CYP94B3. Together, these results demonstrate that in wounded leaves JA-inducible amidohydrolases contribute to regulate active IAA and JA-Ile levels, promoting auxin signaling while attenuating JA signaling. This mechanism represents an example of a metabolic-level crosstalk between the auxin and JA signaling pathways.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Transducción de Señal , Especificidad por Sustrato
12.
Plant Cell ; 24(6): 2515-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22730403

RESUMEN

Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Ligasas/genética , Oxilipinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hipocótilo/genética , Hipocótilo/metabolismo , Ligasas/metabolismo , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Front Plant Sci ; 14: 1273620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269141

RESUMEN

Introduction: Seed vigor is largely a product of sound seed development, maturation processes, genetics, and storage conditions. It is a crucial factor impacting plant growth and crop yield and is negatively affected by unfavorable environmental conditions, which can include drought and heat as well as cold wet conditions. The latter leads to slow germination and increased seedling susceptibility to pathogens. Prior research has shown that a class of plant growth regulators called substituted tertiary amines (STAs) can enhance seed germination, seedling growth, and crop productivity. However, inconsistent benefits have limited STA adoption on a commercial scale. Methods: We developed a novel seed treatment protocol to evaluate the efficacy of 2-(N-methyl benzyl aminoethyl)-3-methyl butanoate (BMVE), which has shown promise as a crop seed treatment in field trials. Transcriptomic analysis of rice seedlings 24 h after BMVE treatment was done to identify the molecular basis for the improved seedling growth. The impact of BMVE on seed development was also evaluated by spraying rice panicles shortly after flower fertilization and subsequently monitoring the impact on seed traits. Results: BMVE treatment of seeds 24 h after imbibition consistently improved wheat and rice seedling shoot and root growth in lab conditions. Treated wheat seedlings grown to maturity in a greenhouse also resulted in higher biomass than controls, though only under drought conditions. Treated seedlings had increased levels of transcripts involved in reactive oxygen species scavenging and auxin and gibberellic acid signaling. Conversely, several genes associated with increased reactive oxygen species/ROS load, abiotic stress responses, and germination hindering processes were reduced. BMVE spray increased both fresh and mature seed weights relative to the control for plants exposed to 96 h of heat stress. BMVE treatment during seed development also benefited germination and seedling growth in the next generation, under both ambient and heat stress conditions. Discussion: The optimized experimental conditions we developed provide convincing evidence that BMVE does indeed have efficacy in plant growth enhancement. The results advance our understanding of how STAs work at the molecular level and provide insights for their practical application to improve crop growth.

14.
Plant Methods ; 18(1): 126, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443862

RESUMEN

BACKGROUND: Our understanding of the physiological responses of rice inflorescence (panicle) to environmental stresses is limited by the challenge of accurately determining panicle photosynthetic parameters and their impact on grain yield. This is primarily due to the lack of a suitable gas exchange methodology for panicles and non-destructive methods to accurately determine panicle surface area. RESULTS: To address these challenges, we have developed a custom panicle gas exchange cylinder compatible with the LiCor 6800 Infra-red Gas Analyzer. Accurate surface area measurements were determined using 3D panicle imaging to normalize the panicle-level photosynthetic measurements. We observed differential responses in both panicle and flag leaf for two temperate Japonica rice genotypes (accessions TEJ-1 and TEJ-2) exposed to heat stress during early grain filling. There was a notable divergence in the relative photosynthetic contribution of flag leaf and panicles for the heat-tolerant genotype (TEJ-2) compared to the sensitive genotype (TEJ-1). CONCLUSION: The novelty of this method is the non-destructive and accurate determination of panicle area and photosynthetic parameters, enabling researchers to monitor temporal changes in panicle physiology during the reproductive development. The method is useful for panicle-level measurements under diverse environmental stresses and is sensitive enough to evaluate genotypic variation for panicle physiology and architecture in cereals with compact inflorescences.

15.
Front Plant Sci ; 13: 1026472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304400

RESUMEN

Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.

16.
Proc Natl Acad Sci U S A ; 105(19): 7100-5, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18458331

RESUMEN

Jasmonate (JA) is a lipid-derived hormone that regulates diverse aspects of plant immunity and development. An amino acid-conjugated form of JA, jasmonoyl-isoleucine (JA-Ile), stimulates binding of the F-box protein coronatine-insensitive 1 (COI1) to, and subsequent ubiquitin-dependent degradation of, jasmonate ZIM domain (JAZ) proteins that repress transcription of JA-responsive genes. The virulence factor coronatine (COR), which is produced by plant pathogenic strains of Pseudomonas syringae, suppresses host defense responses by activating JA signaling in a COI1-dependent manner. Although previous data indicate that COR acts as a molecular mimic of JA-Ile, the mechanism by which JA-Ile and COR are perceived by plant cells remains unknown. Here, we show that interaction of tomato COI1 with divergent members of the JAZ family is highly specific for JA-Ile and structurally related JA conjugates and that COR is approximately 1,000-fold more active than JA-Ile in promoting this interaction in vitro. JA-Ile competes for binding of COR to COI1-JAZ complexes, demonstrating that COR and JA-Ile are recognized by the same receptor. Binding of COR to the COI1-JAZ complex requires COI1 and is severely impaired by a point mutation in the putative ligand-binding pocket of COI1. Finally, we show that the C-terminal region of JAZ3 containing the highly conserved Jas motif is necessary and sufficient for hormone-induced COI1-JAZ interaction. These findings demonstrate that COI1 is a critical component of the JA receptor and that COR exerts its virulence effects by functioning as a potent agonist of this receptor system.


Asunto(s)
Aminoácidos/metabolismo , Ciclopentanos/metabolismo , Indenos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidad , Receptores de Superficie Celular/metabolismo , Solanum lycopersicum/microbiología , Factores de Virulencia/metabolismo , Aminoácidos/química , Indenos/química , Isoleucina/metabolismo , Ligandos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Unión Proteica , Factores de Virulencia/química
17.
Planta ; 231(3): 717-28, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20012084

RESUMEN

Jasmonoyl-L-isoleucine (JA-Ile) is a key jasmonate signal that probably functions in all plant species. The JASMONATE RESISTANT 1 (JAR1) enzyme synthesizes JA-Ile in Arabidopsis [Arabidopsis thaliana (L.) Heynh.], but a similar enzyme from tomato [Solanum lycopersicum (L.)] was not previously described. Tomato SlJAR1 has 66% sequence identity with Arabidopsis JAR1 and the SlJAR1-GST fusion protein purified from Escherichia coli catalyzed the formation of JA-amino acid conjugates in vitro. Kinetic analysis showed the enzyme has a strong preference for Ile over Leu and Val and it was about 10-fold more active with (+)-7-iso-JA than with its epimer (-)-JA. Leaf wounding rapidly increased JA-Ile 50-fold to about 450 pmol g(-1) FW at 30 min after wounding, while conjugates with Leu, Phe, Val and Met were only marginally increased or not detected. Nearly all of the endogenous JA-Ile was the bioactive epimer (+)-7-iso-JA-Ile and there was no evidence for its conversion to (-)-JA-Ile up to 6 h after wounding. A transgenic RNAi approach was used to suppress SlJAR1 transcript that reduced JA-Ile accumulation by 50-75%, suggesting that other JA conjugating enzymes may be present. These results show that SlJAR1 synthesizes the bioactive conjugate (+)-7-iso-JA-Ile and this is the predominant isomer accumulated in wounded tomato leaves.


Asunto(s)
Isoleucina/análogos & derivados , Proteínas de Plantas/fisiología , Solanum lycopersicum/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Ciclopentanos , Isoleucina/biosíntesis , Cinética , Solanum lycopersicum/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad por Sustrato
18.
Trends Plant Sci ; 13(2): 66-71, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18261950

RESUMEN

Recent discoveries show that jasmonate ZIM-domain (JAZ) transcriptional repressors are key regulators of jasmonate hormonal response. Jasmonate promotes interaction between JAZ proteins and the SCF(COI1) ubiquitin ligase, leading to JAZ degradation via the 26S proteasome in Arabidopsis thaliana. Elimination of JAZ repressors then frees the MYC2 transcription factor to stimulate jasmonate-dependent gene expression. Although jasmonic acid and methyl jasmonate were thought to be key regulators of jasmonate responses, they were ineffective in promoting SCF(COI1)-JAZ interaction and it is the isoleucine conjugate of jasmonic acid that acts in this signal transduction pathway. The discovery of JAZ transcriptional regulators greatly advances our understanding of how jasmonate signaling regulates plant growth and response to the environment.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proteínas de Arabidopsis/metabolismo
19.
Plant Direct ; 4(1): e00196, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956854

RESUMEN

Increasing global surface temperatures is posing a major food security challenge. Part of the solution to address this problem is to improve crop heat resilience, especially during grain development, along with agronomic decisions such as shift in planting time and increasing crop diversification. Rice is a major food crop consumed by more than 3 billion people. For rice, thermal sensitivity of reproductive development and grain filling is well-documented, while knowledge concerning the impact of heat stress (HS) on early seed development is limited. Here, we aim to study the phenotypic variation in a set of diverse rice accessions for elucidating the HS response during early seed development. To explore the variation in HS sensitivity, we investigated aus (1), indica (2), temperate japonica (2), and tropical japonica (4) accessions for their HS (39/35°C) response during early seed development that accounts for transition of endosperm from syncytial to cellularization, which broadly corresponds to 24 and 96 hr after fertilization (HAF), respectively, in rice. The two indica and one of the tropical japonica accessions exhibited severe heat sensitivity with increased seed abortion; three tropical japonicas and an aus accession showed moderate heat tolerance, while temperate japonicas exhibited strong heat tolerance. The accessions exhibiting extreme heat sensitivity maintain seed size at the expense of number of fully developed mature seeds, while the accessions showing relative resilience to the transient HS maintained number of fully developed seeds but compromised on seed size, especially seed length. Further, histochemical analysis revealed that all the tested accessions have delayed endosperm cellularization upon exposure to the transient HS by 96 HAF; however, the rate of cellularization was different among the accessions. These findings were further corroborated by upregulation of cellularization-associated marker genes in the developing seeds from the heat-stressed samples.

20.
Plant J ; 55(6): 979-88, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18547396

RESUMEN

SUMMARY: Coronatine is an important virulence factor produced by several pathovars of the bacterial pathogen Pseudomonas syringae. The structure of coronatine is similar to that of a class of plant hormones called jasmonates (JAs). An important step in JA signaling is the SCF(COI1) E3 ubiquitin ligase-dependent degradation of JAZ repressor proteins. We have recently shown that jasmonoyl isoleucine (JA-Ile) promotes physical interaction between Arabidopsis JAZ1 and COI1 (the F-box component of SCF(COI1)) proteins, and that the JA-Ile-dependent COI1-JAZ1 interaction could be reconstituted in yeast cells (i.e. in the absence of other plant proteins). Here we show that coronatine, but not its two biosynthetic precursors, also promotes interaction between Arabidopsis COI1 and multiple JAZ proteins. The C-terminal Jas motif, but not the N-terminal (NT) domain or central ZIM domain of JAZ proteins, is critical for JA-Ile/coronatine-dependent interaction with COI1. Two positively charged amino acid residues in the Jas domain were identified as essential for coronatine-dependent COI1-JAZ interactions. Mutations of these two residues did not affect the ability of JAZ1 and JAZ9 to interact with the transcription factor AtMYC2. Importantly, transgenic Arabidopsis plants expressing JAZ1 carrying these two mutations exhibited JA-insensitive phenotypes, including male sterility and enhanced resistance to P. syringae infection. These results not only suggest that coronatine and JA-Ile target the physical interaction between COI1 and the Jas domain of JAZ repressors, but also illustrate the critical role of positively charged amino acids in the Jas domain in mediating the JA-Ile/coronatine-dependent JAZ interaction with COI1.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Indenos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , ADN Complementario/genética , Proteínas F-Box/metabolismo , Genes de Plantas , Isoleucina/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Dominios y Motivos de Interacción de Proteínas , Infecciones por Pseudomonas/genética , Pseudomonas syringae/patogenicidad , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA