Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Sci ; 12(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009105

RESUMEN

With the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes "inflexible" after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.

2.
Behav Brain Res ; 365: 7-16, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30802531

RESUMEN

Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Modelos Animales de Enfermedad , Naltrexona/farmacología , Alcoholismo/tratamiento farmacológico , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Etanol/farmacología , Modelos Biológicos , Antagonistas de Narcóticos/farmacología
3.
Front Physiol ; 9: 1200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214414

RESUMEN

The nematode Caenorhabditis elegans (C. elegans) is a popular invertebrate model organism to study neurobiological disease states. This is due in part to the intricate mapping of all neurons and synapses of the entire animal, the wide availability of mutant strains, and the genetic and molecular tools that can be used to manipulate the genome and gene expression. We have shown that, C. elegans develops a conditioned preference for cues that had previously been paired with either cocaine or methamphetamine exposure that is dependent on dopamine neurotransmission, similar to findings using place conditioning with rats and mice. In the current study, we show C. elegans also display a preference for, and self-exposure to, cocaine and nicotine. This substance of abuse (SOA) preference response can be selectively blocked by pretreatment with naltrexone and is consistent with the recent discovery of an opioid receptor system in C. elegans. In addition, pre-exposure to the smoking cessation treatment varenicline also inhibits self-exposure to nicotine. Exposure to concentrations of treatments that inhibit SOA preference/self-exposure did not induce any significant inhibition of locomotor activity or affect food or benzaldehyde chemotaxis. These data provide predictive validity for the development of high-throughput C. elegans behavioral medication screens. These screens could enable fast and accurate generation of data to identify compounds that may be effective in treating human addiction. The successful development and validation of such models would introduce powerful and novel tools in the search for new pharmacological treatments for substance use disorders, and provide a platform to study the mechanisms that underlie addictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA