Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microb Ecol ; 86(1): 337-349, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35835965

RESUMEN

Microbial communities in agricultural soils are fundamental for plant growth and in vineyard ecosystems contribute to defining regional wine quality. Managing soil microbes towards beneficial outcomes requires knowledge of how community assembly processes vary across taxonomic groups, spatial scales, and through time. However, our understanding of microbial assembly remains limited. To quantify the contributions of stochastic and deterministic processes to bacterial and fungal assembly across spatial scales and through time, we used 16 s rRNA gene and ITS sequencing in the soil of an emblematic wine-growing region of Italy.Combining null- and neutral-modelling, we found that assembly processes were consistent through time, but bacteria and fungi were governed by different processes. At the within-vineyard scale, deterministic selection and homogenising dispersal dominated bacterial assembly, while neither selection nor dispersal had clear influence over fungal assembly. At the among-vineyard scale, the influence of dispersal limitation increased for both taxonomic groups, but its contribution was much larger for fungal communities. These null-model-based inferences were supported by neutral modelling, which estimated a dispersal rate almost two orders-of-magnitude lower for fungi than bacteria.This indicates that while stochastic processes are important for fungal assembly, bacteria were more influenced by deterministic selection imposed by the biotic and/or abiotic environment. Managing microbes in vineyard soils could thus benefit from strategies that account for dispersal limitation of fungi and the importance of environmental conditions for bacteria. Our results are consistent with theoretical expectations whereby larger individual size and smaller populations can lead to higher levels of stochasticity.


Asunto(s)
Microbiota , Micobioma , Microbiología del Suelo , Suelo , Hongos/genética , Bacterias/genética
2.
BMC Plant Biol ; 19(1): 532, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791233

RESUMEN

BACKGROUND: Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. RESULTS: We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible 'Idared' and 'Royal Gala' in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the 'Idared' × Mr5 population with Erwinia amylovora over several years, and of the 'Royal Gala' × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the 'Idared' × Mr5 and an 'M9' × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. CONCLUSIONS: This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.


Asunto(s)
Resistencia a la Enfermedad/genética , Erwinia amylovora/fisiología , Genes de Plantas , Ligamiento Genético , Malus/microbiología , Enfermedades de las Plantas/genética , Flores/microbiología , Flores/fisiología , Malus/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
3.
Plants (Basel) ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903939

RESUMEN

Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy.

4.
Sci Total Environ ; 834: 155175, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421505

RESUMEN

The taxonomic identification of organisms based on the amplification of specific genetic markers (metabarcoding) implicitly requires adequate discriminatory information and taxonomic coverage of environmental DNA sequences in taxonomic databases. These requirements were quantitatively examined by comparing the determination of cyanobacteria and microalgae obtained by metabarcoding and light microscopy. We used planktic and biofilm samples collected in 37 lakes and 22 rivers across the Alpine region. We focused on two of the most used and best represented genetic markers in the reference databases, namely the 16S rRNA and 18S rRNA genes. A sequence gap analysis using blastn showed that, in the identity range of 99-100%, approximately 30% (plankton) and 60% (biofilm) of the sequences did not find any close counterpart in the reference databases (NCBI GenBank). Similarly, a taxonomic gap analysis showed that approximately 50% of the cyanobacterial and eukaryotic microalgal species identified by light microscopy were not represented in the reference databases. In both cases, the magnitude of the gaps differed between the major taxonomic groups. Even considering the species determined under the microscope and represented in the reference databases, 22% and 26% were still not included in the results obtained by the blastn at percentage levels of identity ≥95% and ≥97%, respectively. The main causes were the absence of matching sequences due to amplification and/or sequencing failure and potential misidentification in the microscopy step. Our results quantitatively demonstrated that in metabarcoding the main obstacles in the classification of 16S rRNA and 18S rRNA sequences and interpretation of high-throughput sequencing biomonitoring data were due to the existence of important gaps in the taxonomic completeness of the reference databases and the short length of reads. The study focused on the Alpine region, but the extent of the gaps could be much greater in other less investigated geographic areas.


Asunto(s)
Cianobacterias , Microalgas , Secuencia de Bases , Cianobacterias/genética , Eucariontes , Región Alpina Europea , Marcadores Genéticos , Microalgas/genética , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S
5.
Front Microbiol ; 12: 773351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867911

RESUMEN

Fish are widely exposed to higher microbial loads compared to land and air animals. It is known that the microbiome plays an essential role in the health and development of the host. The oral microbiome is vital in females of different organisms, including the maternal mouthbrooding species such as Nile tilapia (Oreochromis niloticus). The present study reports for the first time the microbial composition in the buccal cavity of female and male Nile tilapia reared in a recirculating aquaculture system. Mucus samples were collected from the buccal cavity of 58 adult fish (∼1 kg), and 16S rRNA gene amplicon sequencing was used to profile the microbial communities in females and males. The analysis revealed that opportunistic pathogens such as Streptococcus sp. were less abundant in the female buccal cavity. The power play of certain bacteria such as Acinetobacter, Acidobacteria (GP4 and GP6), and Saccharibacteria that have known metabolic advantages was evident in females compared to males. Association networks inferred from relative abundances showed few microbe-microbe interactions of opportunistic pathogens in female fish. The findings of opportunistic bacteria and their interactions with other microbes will be valuable for improving Nile tilapia rearing practices. The presence of bacteria with specific functions in the buccal cavity of female fish points to their ability to create a protective microbial ecosystem for the offspring.

6.
FEMS Microbiol Ecol ; 97(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34289042

RESUMEN

The microbial communities associated to the rhizosphere (the rhizomicrobiome) have a substantial impact on plant growth and yield. Understanding the effects of agricultural management on the rhizomicrobiome is very important for selecting efficient practices. By sequencing the V4 region of 16S rRNA for bacteria and the ITS1 regions and fungi, we investigated the influences of agronomic practices, including cucumber grafting on cucurbit hybrid (Cucurbita moschata × C. maxima), cucumber-garlic intercropping, and treatment with fungicide iprodione-carbendazim on cucumber rhizosphere microbial communities during plant growth. Soil dehydrogenase activity (DHA) and plant vegetative parameters were assessed as an indicator of overall soil microbial activity. We found that both treatments and growth stage induced significant shifts in microbial community structure. Grafting had the highest number of differentially abundant OTUs compared to control samples, followed by intercropping and fungicide treatment, while plant development stage affected both alpha and beta diversities indices and composition of the rhizomicrobiome. DHA was more dependent on plant growth stages than on treatments. Among the assessed factors, grafting and plant developmental stage resulted in the greatest changes in the microbial community composition. Grafting also increased the plant growth parameters, suggesting that this method should be further investigated in vegetable production systems.


Asunto(s)
Cucumis sativus , Microbiota , Raíces de Plantas , ARN Ribosómico 16S/genética , Rizosfera , Suelo , Microbiología del Suelo
7.
Sci Rep ; 8(1): 12523, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131589

RESUMEN

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.


Asunto(s)
Resistencia a la Enfermedad , Peronospora/crecimiento & desarrollo , Proteínas de Plantas/genética , Vitis/crecimiento & desarrollo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Microscopía Confocal , Peronospora/patogenicidad , Sitios de Carácter Cuantitativo , Transducción de Señal , Regulación hacia Arriba , Vitis/clasificación , Vitis/genética , Vitis/microbiología
8.
PLoS One ; 9(4): e92644, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699266

RESUMEN

We present a draft assembly of the genome of European pear (Pyrus communis) 'Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of 'Louise Bonne de Jersey' and 'Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The 'Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.


Asunto(s)
Cromosomas de las Plantas/genética , Genes de Plantas , Genoma de Planta , Pyrus/genética , Mapeo Cromosómico , ADN de Plantas/genética , Europa (Continente) , Evolución Molecular , Marcadores Genéticos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Malus/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Proteoma/análisis , ARN de Planta/genética , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA