Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834979

RESUMEN

Black rot (BR), caused by Guignardia bidwellii, is an emergent fungal disease threatening viticulture and affecting several mildew-tolerant varieties. However, its genetic bases are not fully dissected yet. For this purpose, a segregating population derived from the cross 'Merzling' (hybrid, resistant) × 'Teroldego' (V. vinifera, susceptible) was evaluated for BR resistance at the shoot and bunch level. The progeny was genotyped with the GrapeReSeq Illumina 20K SNPchip, and 7175 SNPs were combined with 194 SSRs to generate a high-density linkage map of 1677 cM. The QTL analysis based on shoot trials confirmed the previously identified Resistance to Guignardia bidwellii (Rgb)1 locus on chromosome 14, which explained up to 29.2% of the phenotypic variance, reducing the genomic interval from 2.4 to 0.7 Mb. Upstream of Rgb1, this study revealed a new QTL explaining up to 79.9% of the variance for bunch resistance, designated Rgb3. The physical region encompassing the two QTLs does not underlie annotated resistance (R)-genes. The Rgb1 locus resulted enriched in genes belonging to phloem dynamics and mitochondrial proton transfer, while Rgb3 presented a cluster of pathogenesis-related Germin-like protein genes, promoters of the programmed cell death. These outcomes suggest a strong involvement of mitochondrial oxidative burst and phloem occlusion in BR resistance mechanisms and provide new molecular tools for grapevine marker-assisted breeding.


Asunto(s)
Resistencia a la Enfermedad , Fitomejoramiento , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico/métodos , Enfermedades de las Plantas/microbiología , Fenotipo
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835477

RESUMEN

The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.


Asunto(s)
Vitis , Vitis/genética , Lipidómica , Espectrometría de Masas en Tándem , Lípidos , Enfermedades de las Plantas/microbiología
3.
J Exp Bot ; 73(10): 3238-3250, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34929033

RESUMEN

Stomata control CO2 uptake for photosynthesis and water loss through transpiration, thus playing a key role in leaf thermoregulation, water-use efficiency (iWUE), and plant productivity. In this work, we investigated the relationship between several leaf traits and hypothesized that stomatal behavior to fast (i.e. minutes) environmental changes co-determines, along with steady-state traits, the physiological response of grapevine to the surrounding fluctuating environment over the growing season. No relationship between iWUE, heat stress tolerance, and stomatal traits was observed in field-grown grapevine, suggesting that other physiological mechanisms are involved in determining leaf evaporative cooling capacity and the seasonal ratio of CO2 uptake (A) to stomatal conductance (gs). Indeed, cultivars that in the field had an unexpected combination of high iWUE but low sensitivity to thermal stress displayed a quick stomatal closure to light, but a sluggish closure to increased vapor pressure deficit (VPD) levels. This strategy, aiming both at conserving water under a high to low light transition and in prioritizing evaporative cooling under a low to high VPD transition, was mainly observed in the cultivars Regina and Syrah. Moreover, cultivars with different known responses to soil moisture deficit or high air VPD (isohydric versus anisohydric) had opposite behavior under fluctuating environments, with the isohydric cultivar showing slow stomatal closure to reduced light intensity but quick temporal responses to VPD manipulation. We propose that stomatal behavior to fast environmental fluctuations can play a critical role in leaf thermoregulation and water conservation under natural field conditions in grapevine.


Asunto(s)
Termotolerancia , Vitis , Dióxido de Carbono , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Estaciones del Año , Vitis/fisiología , Agua/fisiología
4.
J Sci Food Agric ; 101(6): 2380-2388, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33011987

RESUMEN

BACKGROUND: A promising way to overcome the susceptibility of Vitis vinifera L. to fungal diseases is the integration of genetic resistance by the interspecific crossing between V. vinifera varieties and resistant species. However, the products of such hybrids are still not accepted by customers, particularly due to their organoleptic characteristics, not least influenced by their polyphenolic profile. RESULTS: A total of 58 resistant breeding lines, 41 from international programs and 17 new progeny individuals, were grown in one untreated vineyard to exclude any variances by climatic and pedologic conditions or vineyard practice. A total of 60 polyphenols (including acids, anthocyanins, flavonols, flavan-3-ols, and stilbenoids) were determined in grapevine berries by ultrahigh-performance liquid chromatography-mass spectrometry in two consecutive years. The overall profiles were rather consistent (variation P > 0.05) within the two harvests, with the exceptions of epicatechin and caftaric acid. Anthocyanin diglucosides were found in ten of the red breeding lines, malvidin-3,5-O-diglucoside being predominant in nine of them. Total polyphenol content of the unknown progeny individuals and international breeding lines was comparable, with the exception of significantly increased amounts of gallic acid and some flavonoids. CONCLUSION: The comprehensive study reported herein of the polyphenolic profile of hybrids from international breeding programs, but also of new breeds from private initiatives, all cultivated in the same vineyard, will support the selection of promising candidates for further breeding programs to overcome impairment due to undesired sensory characteristics of new highly resistant varieties.


Asunto(s)
Frutas/química , Polifenoles/química , Vitis/genética , Cromatografía Líquida de Alta Presión , Resistencia a la Enfermedad , Frutas/genética , Frutas/inmunología , Frutas/microbiología , Hongos/fisiología , Hibridación Genética , Italia , Espectrometría de Masas , Fitomejoramiento , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Vitis/química , Vitis/inmunología , Vitis/microbiología
5.
Int J Mol Sci ; 20(14)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323823

RESUMEN

For the viticulture of the future, it will be an essential prerequisite to manage grapevine diseases with fewer chemical inputs. The development and the deployment of novel mildew resistant varieties are considered one of the most promising strategies towards a sustainable viticulture. In this regard, a collection of 102 accessions derived from crossing Vitis hybrids with V. vinifera varieties was studied. In addition to the true-to-type analysis, an exhaustive genetic characterization was carried out at the 11 reliable mildew resistance (R) loci available in the literature to date. Our findings highlight the pyramiding of R-loci against downy mildew in 15.7% and against powdery mildew in 39.2% of the total accessions. The genetic analysis was coupled with a three-year evaluation of disease symptoms in an untreated field in order to assess the impact of the R-loci arrangement on the disease resistance degree at leaf and bunch level. Overall, our results strongly suggest that R-loci pyramiding does not necessarily mean to increase the overall disease resistance, but it guarantees the presence of further barriers in case of pathogens overcoming the first. Moreover, our survey allows the discovery of new mildew resistance sources useful for novel QTL identifications towards marker-assisted breeding.


Asunto(s)
Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Vitis/metabolismo , Vitis/microbiología , Ascomicetos/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética
6.
BMC Plant Biol ; 13: 39, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23497049

RESUMEN

BACKGROUND: The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. RESULTS: We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. CONCLUSIONS: The comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use.


Asunto(s)
Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética , Vitis/genética , Genotipo , Filogenia , Vitis/clasificación
7.
Front Plant Sci ; 14: 1112157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798701

RESUMEN

Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.

8.
J Exp Bot ; 63(18): 6359-69, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23095995

RESUMEN

Somatic mutation is a natural mechanism which allows plant growers to develop new cultivars. As a source of variation within a uniform genetic background, it also represents an ideal tool for studying the genetic make-up of important traits and for establishing gene functions. Layer-specific molecular characterization of the Pinot family of grape cultivars was conducted to provide an evolutionary explanation for the somatic mutations that have affected the locus of berry colour. Through the study of the structural dynamics along chromosome 2, a very large deletion present in a single Pinot gris cell layer was identified and characterized. This mutation reveals that Pinot gris and Pinot blanc arose independently from the ancestral Pinot noir, suggesting a novel parallel evolutionary model. This proposed 'Pinot-model' represents a breakthrough towards the full understanding of the mechanisms behind the formation of white, grey, red, and pink grape cultivars, and eventually of their specific enological aptitude.


Asunto(s)
Evolución Molecular , Eliminación de Gen , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Pigmentación , Vitis/genética , Frutas/citología , Frutas/genética , Frutas/metabolismo , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Polimerasa Taq/análisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/citología , Vitis/metabolismo
9.
BMC Plant Biol ; 11: 114, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21838877

RESUMEN

BACKGROUND: Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection. RESULTS: A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport. CONCLUSIONS: This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.


Asunto(s)
Oomicetos/fisiología , Enfermedades de las Plantas/genética , Estilbenos/metabolismo , Vitis/metabolismo , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Inmunidad Innata/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Sesquiterpenos/metabolismo , Transcripción Genética , Transcriptoma , Vitis/genética , Vitis/inmunología , Fitoalexinas
10.
Front Plant Sci ; 12: 693887, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276743

RESUMEN

One of the most economically important grapevine diseases is Downy mildew (DM) caused by the oomycete Plasmopara viticola. A strategy to reduce the use of fungicides to compensate for the high susceptibility of V. vinifera is the selection of grapevine varieties showing pathogen-specific resistance. We applied a metabolomics approach to evaluate the metabolic modulation in mono-locus resistant genotypes carrying one locus associated with P. viticola resistance (Rpv) (BC4- Rpv1, Bianca- Rpv3-1, F12P160- Rpv12, Solaris- Rpv10), as well as in pyramided resistant genotypes carrying more than one Rpv (F12P60- Rpv3-1; Rpv12 and F12P127- Rpv3-1, Rpv3-3; Rpv10) taking as a reference the susceptible genotype Pinot Noir. In order to understand if different sources of resistance are associated with different degrees of resistance and, implicitly, with different responses to the pathogen, we considered the most important classes of plant metabolite primary compounds, lipids, phenols and volatile organic compounds at 0, 12, 48, and 96 h post-artificial inoculation (hpi). We identified 264 modulated compounds; among these, 22 metabolites were found accumulated in significant quantities in the resistant cultivars compared to Pinot Noir. In mono-locus genotypes, the highest modulation of the metabolites was noticed at 48 and 96 hpi, except for Solaris, that showed a behavior similar to the pyramided genotypes in which the changes started to occur as early as 12 hpi. Bianca, Solaris and F12P60 showed the highest number of interesting compounds accumulated after the artificial infection and with a putative effect against the pathogen. In contrast, Pinot Noir showed a less effective defense response in containing DM growth.

11.
Sci Rep ; 10(1): 12193, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699241

RESUMEN

Plasmopara viticola is the causal agent of grapevine downy mildew (DM). DM resistant varieties deploy effector-triggered immunity (ETI) to inhibit pathogen growth, which is activated by major resistance loci, the most common of which are Rpv3 and Rpv12. We previously showed that a quick metabolome response lies behind the ETI conferred by Rpv3 TIR-NB-LRR genes. Here we used a grape variety operating Rpv12-mediated ETI, which is conferred by an independent locus containing CC-NB-LRR genes, to investigate the defence response using GC/MS, UPLC, UHPLC and RNA-Seq analyses. Eighty-eight metabolites showed significantly different concentration and 432 genes showed differential expression between inoculated resistant leaves and controls. Most metabolite changes in sugars, fatty acids and phenols were similar in timing and direction to those observed in Rpv3-mediated ETI but some of them were stronger or more persistent. Activators, elicitors and signal transducers for the formation of reactive oxygen species were early observed in samples undergoing Rpv12-mediated ETI and were paralleled and followed by the upregulation of genes belonging to ontology categories associated with salicylic acid signalling, signal transduction, WRKY transcription factors and synthesis of PR-1, PR-2, PR-5 pathogenesis-related proteins.


Asunto(s)
Resistencia a la Enfermedad/genética , Genómica , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Bases de Datos Genéticas , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Metaboloma , Peronospora/aislamiento & purificación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Análisis de Componente Principal , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo , RNA-Seq , Vitis/microbiología
12.
Front Plant Sci ; 10: 234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894868

RESUMEN

The development of new resistant varieties to the oomycete Plasmopara viticola (Berk.& Curt) is a promising way to combat downy mildew (DM), one of the major diseases threatening the cultivated grapevine (Vitis vinifera L.). Taking advantage of a segregating population derived from "Merzling" (a mid-resistant hybrid) and "Teroldego" (a susceptible landrace), 136 F1 individuals were characterized by combining genetic, phenotypic, and gene expression data to elucidate the genetic basis of DM resistance and polyphenol biosynthesis upon P. viticola infection. An improved consensus linkage map was obtained by scoring 192 microsatellite markers. The progeny were screened for DM resistance and production of 42 polyphenols. QTL mapping showed that DM resistance is associated with the herein named Rpv3-3 specific haplotype and it identified 46 novel metabolic QTLs linked to 30 phenolics-related parameters. A list of the 95 most relevant candidate genes was generated by specifically exploring the stilbenoid-associated QTLs. Expression analysis of 11 genes in Rpv3-3 +/- genotypes displaying disparity in DM resistance level and stilbenoid accumulation revealed significant new candidates for the genetic control of stilbenoid biosynthesis and oligomerization. These overall findings emphasized that DM resistance is likely mediated by the major Rpv3-3 haplotype and stilbenoid induction.

13.
Front Plant Sci ; 10: 1394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824521

RESUMEN

The reduction of pesticide usage is a current imperative and the implementation of sustainable viticulture is an urgent necessity. A potential solution, which is being increasingly adopted, is offered by the use of grapevine cultivars resistant to its main pathogenic threats. This, however, has contributed to changes in defense strategies resulting in the occurrence of secondary diseases, which were previously controlled. Concomitantly, the ongoing climate crisis is contributing to destabilizing the increasingly dynamic viticultural context. In this review, we explore the available knowledge on three Ascomycetes which are considered emergent and causal agents of powdery mildew, black rot and anthracnose. We also aim to provide a survey on methods for phenotyping disease symptoms in fields, greenhouse and lab conditions, and for disease control underlying the insurgence of pathogen resistance to fungicide. Thus, we discuss fungal genetic variability, highlighting the usage and development of molecular markers and barcoding, coupled with genome sequencing. Moreover, we extensively report on the current knowledge available on grapevine-ascomycete interactions, as well as the mechanisms developed by the host to counteract the attack. Indeed, to better understand these resistance mechanisms, it is relevant to identify pathogen effectors which are involved in the infection process and how grapevine resistance genes function and impact the downstream cascade. Dealing with such a wealth of information on both pathogens and the host, the horizon is now represented by multidisciplinary approaches, combining traditional and innovative methods of cultivation. This will support the translation from theory to practice, in an attempt to understand biology very deeply and manage the spread of these Ascomycetes.

14.
Genetics ; 176(4): 2637-50, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603124

RESUMEN

The construction of a dense genetic map for Vitis vinifera and its anchoring to a BAC-based physical map is described: it includes 994 loci mapped onto 19 linkage groups, corresponding to the basic chromosome number of Vitis. Spanning 1245 cM with an average distance of 1.3 cM between adjacent markers, the map was generated from the segregation of 483 single-nucleotide polymorphism (SNP)-based genetic markers, 132 simple sequence repeats (SSRs), and 379 AFLP markers in a mapping population of 94 F(1) individuals derived from a V. vinifera cross of the cultivars Syrah and Pinot Noir. Of these markers, 623 were anchored to 367 contigs that are included in a physical map produced from the same clone of Pinot Noir and covering 352 Mbp. On the basis of contigs containing two or more genetically mapped markers, region-dependent estimations of physical and recombinational distances are presented. The markers used in this study include 118 SSRs common to an integrated map derived from five segregating populations of V. vinifera. The positions of these SSR markers in the two maps are conserved across all Vitis linkage groups. The addition of SNP-based markers introduces polymorphisms that are easy to database, are useful for evolutionary studies, and significantly increase the density of the map. The map provides the most comprehensive view of the Vitis genome reported to date and will be relevant for future studies on structural and functional genomics and genetic improvement.


Asunto(s)
Mapeo Cromosómico , Vitis/genética , Cromosomas Artificiales Bacterianos/genética , Mapeo Contig , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleótido Simple
15.
Food Res Int ; 98: 10-19, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28610726

RESUMEN

Wild American genotypes represent an important part of the Vitis germplasm in relation to grape improvement. Today, these genotypes are currently involved in breeding programmes in order to introgress traits resistant to pests and diseases in V. vinifera cultivars. Nevertheless, the metabolic composition of their grapes has not been widely investigated. This study aimed to explore in detail the metabolomic profile in terms of simple phenolic, proanthocyanidin, anthocyanin and lipid compounds in two hybrids and five American genotypes. The results were compared with those of two V. vinifera cultivars. A multi-targeted metabolomics approach using a combination of LC-MS and LC-DAD methods was used to identify and quantify 124 selected metabolites. The genotypes studied showed considerable variability in the metabolomic profile according to the grape composition of V. vinifera and other Vitis genotypes. As regards the composition of anthocyanins, not all wild genotypes contained both mono- and di-glucoside derivatives. Wild genotype 41B and V. vinifera cultivars contained only monoglucoside anthocyanins. The proanthocyanidins of non-V. vinifera genotypes were mainly rich in oligomers and short-chain polymers. The analysis of lipids in wild Vitis genotypes, here reported for the first time, showed the existence of a certain diversity in their composition suggesting a strong influence of the environmental conditions on the general lipid pattern.


Asunto(s)
Antocianinas/metabolismo , Frutas/metabolismo , Genotipo , Metabolismo de los Lípidos , Fenoles/metabolismo , Proantocianidinas/metabolismo , Vitis/metabolismo , Américas , Cromatografía Liquida , Glucósidos/metabolismo , Humanos , Hibridación Genética , Espectrometría de Masas , Metabolómica , Fitomejoramiento , Especificidad de la Especie , Vitis/genética , Vino
16.
Front Plant Sci ; 8: 1524, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928759

RESUMEN

Downy mildew (Plasmopara viticola) is one of the most destructive diseases of the cultivated species Vitis vinifera. The use of resistant varieties, originally derived from backcrosses of North American Vitis spp., is a promising solution to reduce disease damage in the vineyards. To shed light on the type and the timing of pathogen-triggered resistance, this work aimed at discovering biomarkers for the defense response in the resistant variety Bianca, using leaf discs after inoculation with a suspension of P. viticola. We investigated primary and secondary metabolism at 12, 24, 48, and 96 h post-inoculation (hpi). We used methods of identification and quantification for lipids (LC-MS/MS), phenols (LC-MS/MS), primary compounds (GC-MS), and semi-quantification for volatile compounds (GC-MS). We were able to identify and quantify or semi-quantify 176 metabolites, among which 53 were modulated in response to pathogen infection. The earliest changes occurred in primary metabolism at 24-48 hpi and involved lipid compounds, specifically unsaturated fatty acid and ceramide; amino acids, in particular proline; and some acids and sugars. At 48 hpi, we also found changes in volatile compounds and accumulation of benzaldehyde, a promoter of salicylic acid-mediated defense. Secondary metabolism was strongly induced only at later stages. The classes of compounds that increased at 96 hpi included phenylpropanoids, flavonols, stilbenes, and stilbenoids. Among stilbenoids we found an accumulation of ampelopsin H + vaticanol C, pallidol, ampelopsin D + quadrangularin A, Z-miyabenol C, and α-viniferin in inoculated samples. Some of these compounds are known as phytoalexins, while others are novel biomarkers for the defense response in Bianca. This work highlighted some important aspects of the host response to P. viticola in a commercial variety under controlled conditions, providing biomarkers for a better understanding of the mechanism of plant defense and a potential application in field studies of resistant varieties.

17.
J Agric Food Chem ; 54(20): 7692-702, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17002441

RESUMEN

Flavonols are products of the flavonoid biosynthetic pathway, which also give rise to anthocyanins and condensed tannins in grapes. We investigated their presence in the berry skins of 91 grape varieties (Vitis vinifera L.), in order to produce a classification based on the flavonol profile. The presence of laricitrin 3-O-galactoside and syringetin 3-O-galactoside in red grapes is reported here for the first time. In red grapes, the main flavonol was quercetin (mean = 43.99%), followed by myricetin (36.81%), kaempferol (6.43%), laricitrin (5.65%), isorhamnetin (3.89%), and syringetin (3.22%). In white grapes, the main flavonol was quercetin (mean = 81.35%), followed by kaempferol (16.91%) and isorhamnetin (1.74%). The delphinidin-like flavonols myricetin, laricitrin, and syringetin were missing in all white varieties, indicating that the enzyme flavonoid 3',5'-hydroxylase is not expressed in white grape varieties. The pattern of expression of flavonols and anthocyanins in red grapes was compared, in order to gain information on the substrate specificity of enzymes involved in flavonoid biosynthesis.


Asunto(s)
Antocianinas/análisis , Flavonoles/análisis , Frutas/química , Vitis/química , Cromatografía Líquida de Alta Presión , Hidrólisis , Quercetina/análisis , Especificidad de la Especie
18.
J Mass Spectrom ; 49(9): 860-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25230183

RESUMEN

The phenolic composition of grape berries grown in Italy (Cabernet Cortis, Johanniter, Solaris, Phoenix, and Regent) and in Germany (Regent and Phoenix) was analyzed using two complementary LC-MS/MS (Liquid Chromatography - Tandem Quadrupole Mass Spectrometry) methods. These five cultivars belong to fungus-resistant grape varieties (PIWI) and little is known about their phenolic profile, although phenolics such as phytoalexins have been recognized, playing a key role in the resistance mechanism. A triple quadruple mass spectrometer detector was used for both identification and quantification, and analytical tools from untargeted metabolomics were applied to check and control the quality of the results. Specifically, biological, technical, and instrumental replications were included in order to study the variability at different levels. The results allowed tuning of the sampling protocol and provided a rich phenolic metabolite profile for the aforementioned PIWI varieties, as compared with Vitis vinifera cultivars, especially in the class of stilbenes.

19.
J Agric Food Chem ; 59(10): 5565-71, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21510710

RESUMEN

Biosynthesis of the sesquiterpene rotundone in Vespolina grapes during berry ripening was investigated over two consecutive seasons, revealing that the compound accumulates from veraison to harvest and reaches relatively high concentrations (up to 5.44 µg/kg). Rotundone levels up to 1.91 µg/kg were also found in clones of Gruener Veltliner, a white grape variety known to give 'peppery' wines. These concentrations are higher than those reported for Syrah grapes and are similar to the levels found in some plants. Rotundone was shown to accumulate almost exclusively in berry exocarp, suggesting that skin contact during winemaking could be used to modulate the peppery character of red wine. However, rotundone yield after the winemaking process was relatively low. Indeed, only 10% of the rotundone present in grapes was extracted during fermentation, and only 6% was recovered in bottled wine. The results presented in this work provide key knowledge for manipulation of the peppery character of wine in order to optimize the intensity of this characteristic wine aroma.


Asunto(s)
Frutas/química , Frutas/crecimiento & desarrollo , Sesquiterpenos/análisis , Vitis , Vino/análisis , Cromatografía de Gases , Fermentación , Manipulación de Alimentos/métodos , Sesquiterpenos/metabolismo , Olfato , Especificidad de la Especie , Espectrometría de Masas en Tándem
20.
J Agric Food Chem ; 59(10): 5364-75, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21510709

RESUMEN

In the Vitaceae, viniferins represent a relatively restricted group of trans-resveratrol oligomers with antifungal properties, thus enabling plants to cope with pathogen attack. The aim of this study was to perform isolation and structural characterization of the whole class of viniferins accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola . Infected leaves of resistant plants were collected 6 days after infection, extracted with methanol, and prepurified by flash chromatography using ENV+ and Toyopearl HW 40S resins. Further fractionation using normal-phase preparative chromatography and then reversed-phase preparative chromatography allowed isolation of 14 peaks. The isolated compounds were identified using advanced mass spectrometry techniques and extensive one- and two-dimensional nuclear magnetic resonance measurements, UV, CD, optical properties, and molecular mechanic calculations. The results demonstrated the presence in infected leaves of seven dimers (six stilbenes and one stilbenoid), of which four were new in grapevine (ampelopsin D, quadrangularin A, E-ω-viniferin, and Z-ω-viniferin), four trimers (three stilbenes and one stilbenoid), of which two (Z-miyabenol C and E-cis-miyabenol C) were new in grapevine, three tetramer stilbenoids, all new in grapevine, isohopeaphenol, ampelopsin H, and a vaticanol C-like isomer. The isolation of a dimer deriving from the condensation of (+)-catechin with trans-caffeic acid also indicated that other preformed phenolics are structurally modified in tissues infected with P. viticola.


Asunto(s)
Genotipo , Oomicetos , Enfermedades de las Plantas/genética , Hojas de la Planta/metabolismo , Estilbenos/metabolismo , Vitis/genética , Ácidos Cafeicos/química , Catequina/química , Dimerización , Hibridación Genética/genética , Hojas de la Planta/química , Resveratrol , Estilbenos/análisis , Estilbenos/química , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA