Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circulation ; 142(16): 1545-1561, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32794408

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by profound vascular remodeling in which pulmonary arteries narrow because of medial thickening and occlusion by neointimal lesions, resulting in elevated pulmonary vascular resistance and right heart failure. Therapies targeting the neointima would represent a significant advance in PAH treatment; however, our understanding of the cellular events driving neointima formation, and the molecular pathways that control them, remains limited. METHODS: We comprehensively map the stepwise remodeling of pulmonary arteries in a robust, chronic inflammatory mouse model of pulmonary hypertension. This model demonstrates pathological features of the human disease, including increased right ventricular pressures, medial thickening, neointimal lesion formation, elastin breakdown, increased anastomosis within the bronchial circulation, and perivascular inflammation. Using genetic lineage tracing, clonal analysis, multiplexed in situ hybridization, immunostaining, deep confocal imaging, and staged pharmacological inhibition, we define the cell behaviors underlying each stage of vascular remodeling and identify a pathway required for neointima formation. RESULTS: Neointima arises from smooth muscle cells (SMCs) and not endothelium. Medial SMCs proliferate broadly to thicken the media, after which a small number of SMCs are selected to establish the neointima. These neointimal founder cells subsequently undergoing massive clonal expansion to form occlusive neointimal lesions. The normal pulmonary artery SMC population is heterogeneous, and we identify a Notch3-marked minority subset of SMCs as the major neointimal cell of origin. Notch signaling is specifically required for the selection of neointimal founder cells, and Notch inhibition significantly improves pulmonary artery pressure in animals with pulmonary hypertension. CONCLUSIONS: This work describes the first nongenetically driven murine model of pulmonary hypertension (PH) that generates robust and diffuse occlusive neointimal lesions across the pulmonary vascular bed and does so in a stereotyped timeframe. We uncover distinct cellular and molecular mechanisms underlying medial thickening and neointima formation and highlight novel transcriptional, behavioral, and pathogenic heterogeneity within pulmonary artery SMCs. In this model, inflammation is sufficient to generate characteristic vascular pathologies and physiological measures of human PAH. We hope that identifying the molecular cues regulating each stage of vascular remodeling will open new avenues for therapeutic advancements in the treatment of PAH.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Miocitos del Músculo Liso/metabolismo , Receptor Notch3/metabolismo , Remodelación Vascular/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Músculo Liso Vascular/metabolismo
2.
J Pediatr ; 231: 278-283.e2, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33359301

RESUMEN

ABCA3 deficiency is a rare cause of neonatal respiratory failure. Biallelic complete loss of function variants lead to neonatal demise without lung transplantation, but children with partial function variants have variable outcomes. The favorable clinical course of 3 such infants presenting with respiratory distress at birth is described.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Humanos , Recién Nacido , Masculino , Mutación , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia
3.
Curr Opin Pediatr ; 33(3): 302-310, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938476

RESUMEN

PURPOSE OF REVIEW: Pediatric coronavirus disease 2019 (COVID-19) respiratory disease is a distinct entity from adult illness, most notable in its milder phenotype. This review summarizes the current knowledge of the clinical patterns, cellular pathophysiology, and epidemiology of COVID-19 respiratory disease in children with specific attention toward factors that account for the maturation-related differences in disease severity. RECENT FINDINGS: Over the past 14 months, knowledge of the clinical presentation and pathophysiology of COVID-19 pneumonia has rapidly expanded. The decreased disease severity of COVID-19 pneumonia in children was an early observation. Differences in the efficiency of viral cell entry and timing of immune recognition and response between children and adults remain at the center of ongoing research. SUMMARY: The clinical spectrum of COVID-19 respiratory disease in children is well defined. The age-related differences protecting children from severe disease and death remain incompletely understood.


Asunto(s)
COVID-19 , Trastornos Respiratorios , Enfermedades Respiratorias , Adulto , Niño , Humanos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
5.
Bio Protoc ; 12(1): e4273, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35118166

RESUMEN

Pulmonary hypertension (PH) is a heterogenous and incurable disease marked by varying degrees of pulmonary vascular remodeling. This vascular remodeling, which includes thickening of the smooth muscle layer (an early finding) and formation of occlusive neointimal lesions (a late finding) in the pulmonary arteries, is a major driver of morbidity and mortality in PH. Available PH therapies consist of vasodilators that do not specifically target lesion formation or expansion and neither prevent progression nor reverse disease. This paucity of curative treatments highlights the need for new drug discovery targeting crucial steps of artery remodeling in PH. The cell dynamics and molecular signals driving neointimal lesion formation have been difficult to elucidate as classic mouse models of PH do not develop neointima. Here, we detail the methods to generate a robust and non-genetic mouse model of PH with medial thickening and neointimal lesion formation in the pulmonary arteries, through chronic exposure to an inflammatory stimulus-house dust mite (HDM). This model rapidly generates human-like pulmonary arterial lesions following a reproducible time course, allowing scrutiny of the cellular and molecular mechanisms controlling each stage of artery remodeling. Further, we outline optimal tissue handling, sectioning, and staining methodologies for detailed quantitative analysis of artery medial thickening and neointimal lesion formation and expansion. Finally, we present a method for staged pharmacologic intervention to identify molecules and pathways required at each step of the pulmonary arterial remodeling process. The advantages of this mouse model of PH over currently available animal models are five-fold. (i) It allows the use of the full range of genetic and single cell tools available in mice to manipulate and study the process of vascular remodeling seen in human disease, including the formation of neointimal lesions in a controlled and cell specific manner. (ii) The vascular lesions develop in a stereotyped manner with predictable timing, allowing for pharmacologic manipulation at discrete stages of vessel remodeling. (iii) It is rapid, with development of PH and vascular remodeling in a timeframe of two to eight weeks. (iv) It uses simple techniques and requires neither surgery, unusual equipment, or extensive personnel training. (v) The staining and quantitation methodologies we present are a significant improvement over those currently in use in the field. We hope that dissemination of this model and the associated detailed methods will speed up the development of novel and more effective PH therapeutics. Graphic abstract: Chronic perivascular inflammation induces medial thickening and neointima formation in pulmonary arteries, following a stereotyped time course, and allowing staged pharmacologic intervention during specific remodeling events, as well as quantitative assessment of vascular changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA