Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(35): 15938-15943, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36006400

RESUMEN

(+)-Matrine and (+)-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ1-piperidine. Inspired by the biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ1-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.


Asunto(s)
Alcaloides , Sophora , Alcaloides/química , Piperidinas , Piridinas , Quinolizinas/química , Sophora/química , Matrinas
2.
Org Biomol Chem ; 20(39): 7787-7794, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36172848

RESUMEN

Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π → π* absorption, self-reporting fluorescence, Z → E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.


Asunto(s)
Compuestos Azo , Mitocondrias , Compuestos Azo/farmacología , Muerte Celular , Colorantes , Mitocondrias/metabolismo
3.
Org Lett ; 21(24): 9940-9944, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31750667

RESUMEN

A general protocol for the hydroacylation of styrenes from aliphatic carboxylic acids is reported. These reactions proceed via ß-scission of a phosphoranyl radical that is accessed by photoredox catalysis, followed by addition of the resulting acyl radical to the styrenyl olefin. We show that phosphine tunability is critical for efficient intermolecular coupling due to competitive quenching of the photocatalyst by the olefin. Primary, secondary, and structurally rigid tertiary carboxylic acids all generate valuable unsymmetrical dialkyl ketones.


Asunto(s)
Ácidos Carboxílicos/química , Cetonas/síntesis química , Procesos Fotoquímicos , Estirenos/química , Acilación , Catálisis , Cetonas/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA