RESUMEN
Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer. We ran a high-throughput screen for inhibitors of GOT1 and identified a small molecule, iGOT1-01, with in vitro GOT1 inhibitor activity. Application in pancreatic cancer cells revealed metabolic and growth inhibitory activity reflecting a promiscuous inhibitory profile. We then performed an in silico docking analysis to study inhibitor-GOT1 interactions with iGOT1-01 analogues that possess improved solubility and potency properties. These results suggested that the GOT1 inhibitor competed for binding to the pyridoxal 5-phosphate (PLP) cofactor site of GOT1. To analyze how the GOT1 inhibitor bound to GOT1, a series of GOT1 mutant enzymes that abolished PLP binding were generated. Application of the mutants in X-ray crystallography and thermal shift assays again suggested but were unable to formally conclude that the GOT1 inhibitor bound to the PLP site. Mutational studies revealed the relationship between PLP binding and the thermal stability of GOT1 while highlighting the essential nature of several residues for GOT1 catalytic activity. Insight into the mode of action of GOT1 inhibitors may provide leads to the development of drugs that target redox balance in pancreatic cancer.
Asunto(s)
Aspartato Aminotransferasa Citoplasmática/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Inhibidores Enzimáticos/farmacología , Mutación , Neoplasias Pancreáticas/patología , Aspartato Aminotransferasa Citoplasmática/genética , Aspartato Aminotransferasa Citoplasmática/metabolismo , Sitios de Unión , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Metabolómica , Modelos Moleculares , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Autotaxin (ATX) is a secreted glycoprotein that converts lysophosphatidylcholine (LPC) to the bioactive phospholipid lysophosphatidic acid (LPA) and is the major enzyme generating circulating LPA. Inhibition of LPA signaling has profound antifibrotic effects in multiple organ systems, including lung, kidney, skin, and peritoneum. However, other LPA-generating pathways exist, and the role of ATX in localized tissue LPA production and fibrosis remains unclear and controversial. In this study, we describe the preclinical pharmacologic, pharmacokinetic, and pharmacodynamic properties of a novel small-molecule ATX inhibitor, PAT-505 [3-((6-chloro-2-cyclopropyl-1-(1-ethyl-1H-pyrazol-4-yl)-7-fluoro-1H-indol-3-yl) thio)-2-fluorobenzoic acid sodium salt]. PAT-505 is a potent, selective, noncompetitive inhibitor that displays significant inhibition of ATX activity in plasma and liver tissue after oral administration. When dosed therapeutically in a Stelic Mouse Animal Model of nonalcoholic steatohepatitis (NASH), PAT-505 treatment resulted in a small but significant improvement in fibrosis with only minor improvements in hepatocellular ballooning and hepatic inflammation. In a choline-deficient, high-fat diet model of NASH, therapeutic treatment with PAT-505 robustly reduced liver fibrosis with no significant effect on steatosis, hepatocellular ballooning, or inflammation. These data demonstrate that inhibiting autotaxin is antifibrotic and may represent a novel therapeutic approach for the treatment of multiple fibrotic liver diseases, including NASH.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Piperazinas/farmacología , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Piperazinas/farmacocinética , Piperazinas/uso terapéuticoRESUMEN
As a follow-up to the discovery of our spirocyclic proline-based TPH1 inhibitor lead, we describe the optimization of this scaffold. Through a combination of X-ray co-crystal structure guided design and an in vivo screen, new substitutions in the lipophilic region of the inhibitors were identified. This effort led to new TPH1 inhibitors with in vivo efficacy when dosed as their corresponding ethyl ester prodrugs. In particular, 15b (KAR5585), the prodrug of the potent TPH1 inhibitor 15a (KAR5417), showed robust reduction of intestinal serotonin (5-HT) levels in mice. Furthermore, oral administration of 15b generated high and sustained systemic exposure of the active parent 15a in rats and dogs. KAR5585 was selected for further pharmacological evaluation in disease models associated with a dysfunctional peripheral 5-HT system.
Asunto(s)
Profármacos/química , Prolina/análogos & derivados , Pirimidinas/química , Compuestos de Espiro/química , Triptófano Hidroxilasa/antagonistas & inhibidores , Triptófano Hidroxilasa/metabolismo , Animales , Sitios de Unión , Perros , Semivida , Humanos , Concentración 50 Inhibidora , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Profármacos/metabolismo , Profármacos/farmacología , Prolina/metabolismo , Prolina/farmacología , Estructura Terciaria de Proteína , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ratas , Serotonina/metabolismo , Compuestos de Espiro/metabolismo , Compuestos de Espiro/farmacología , Relación Estructura-ActividadRESUMEN
An increasing number of diseases have been linked to a dysfunctional peripheral serotonin system. Given that tryptophan hydroxylase 1 (TPH1) is the rate limiting enzyme in the biosynthesis off serotonin, it represents an attractive target to regulate peripheral serotonin. Following up to our first disclosure, we report a new chemotype of TPH1 inhibitors where-by the more common central planar heterocycle has been replaced with an open-chain, acyl guanidine surrogate. Through our work, we found that compounds of this nature provide highly potent TPH1 inhibitors with favorable physicochemical properties that were effective in reducing murine intestinal 5-HT in vivo. Furthermore, we obtained a high resolution (1.90Å) X-ray structure crystal structure of one of these inhibitors (compound 51) that elucidated the active conformation along with revealing a dimeric form of TPH1 for the first time.
Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Guanidina/farmacología , Triptófano Hidroxilasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Guanidina/síntesis química , Guanidina/química , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triptófano Hidroxilasa/metabolismoRESUMEN
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein-coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain. Therefore, ATX inhibitors represent an attractive strategy for the development of therapeutics to treat a variety of diseases. Mouse and rat ATX have been crystallized previously with LPA or small-molecule inhibitors bound. Here, we present the crystal structures of human ATX in complex with four previously unpublished, structurally distinct ATX inhibitors. We demonstrate that the mechanism of inhibition of each compound reflects its unique interactions with human ATX. Our studies may provide a basis for the rational design of novel ATX inhibitors.
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Línea Celular Tumoral , Cristalización , Células HEK293 , Humanos , Ratones , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-ActividadRESUMEN
Isocitrate dehydrogenase kinase/phosphatase (AceK) regulates entry into the glyoxylate bypass by reversibly phosphorylating isocitrate dehydrogenase (ICDH). On the basis of the recently determined structure of the AceK-ICDH complex from Escherichia coli, we have classified the structures of homodimeric NADP(+)-ICDHs to rationalize and predict which organisms likely contain substrates for AceK. One example is Burkholderia pseudomallei (Bp). Here we report a crystal structure of Bp-ICDH that exhibits the necessary structural elements required for AceK recognition. Kinetic analyses provided further confirmation that Bp-ICDH is a substrate for AceK. We conclude that the highly stringent AceK binding sites on ICDH are maintained only in Gram-negative bacteria.
Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Burkholderia pseudomallei/enzimología , Dominio Catalítico , Dimerización , Escherichia coli/enzimología , Bacterias Gramnegativas/enzimología , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/clasificación , Isocitrato Deshidrogenasa/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Especificidad por SustratoRESUMEN
The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3' end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins.
Asunto(s)
Conformación de Ácido Nucleico , Precursores del ARN/química , ARN Ribosómico 5S/química , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Animales , Autoantígenos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Ensayos de Protección de Nucleasas/métodos , Oocitos/química , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Procesamiento de Término de ARN 3' , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismoRESUMEN
BACKGROUND: The EP4 prostanoid receptor is one of four GPCRs that mediate the diverse actions of prostaglandin E2 (PGE2). Novel selective EP4 receptor agonists would assist to further elucidate receptor sub-type function and promote development of therapeutics for bone healing, heart failure, and other receptor associated conditions. The rat EP4 (rEP4) receptor has been used as a surrogate for the human EP4 (hEP4) receptor in multiple SAR studies. To better understand the validity of this traditional approach, homology models were generated by threading for both receptors using the RaptorX server. These models were fit to an implicit membrane using the PPM server and OPM database with refinement of intra and extracellular loops by Prime (Schrödinger). To understand the interaction between the receptors and known agonists, induced-fit docking experiments were performed using Glide and Prime (Schrödinger), with both endogenous agonists and receptor sub-type selective, small-molecule agonists. The docking scores and observed interactions were compared with radioligand displacement experiments and receptor (rat & human) activation assays monitoring cAMP. RESULTS: Rank-ordering of in silico compound docking scores aligned well with in vitro activity assay EC50 and radioligand binding Ki. We observed variations between rat and human EP4 binding pockets that have implications in future small-molecule receptor-modulator design and SAR, specifically a S103G mutation within the rEP4 receptor. Additionally, these models helped identify key interactions between the EP4 receptor and ligands including PGE2 and several known sub-type selective agonists while serving as a marked improvement over the previously reported models. CONCLUSIONS: This work has generated a set of novel homology models of the rEP4 and hEP4 receptors. The homology models provide an improvement upon the previously reported model, largely due to improved solvation. The hEP4 docking scores correlates best with the cAMP activation data, where both data sets rank order Rivenprost>CAY10684 > PGE1 ≈ PGE2 > 11-deoxy-PGE1 ≈ 11-dexoy-PGE2 > 8-aza-11-deoxy-PGE1. This rank-ordering matches closely with the rEP4 receptor as well. Species-specific differences were noted for the weak agonists Sulprostone and Misoprostol, which appear to dock more readily within human receptor versus rat receptor.
Asunto(s)
Modelos Moleculares , Subtipo EP4 de Receptores de Prostaglandina E/química , Homología Estructural de Proteína , Secuencia de Aminoácidos , Animales , Decapodiformes , Dinoprostona/análogos & derivados , Dinoprostona/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Ratas , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Rodopsina/químicaRESUMEN
A series of small-molecule full agonists of the prostaglandin E2 type 4 (EP4) receptor have been generated and evaluated for binding affinity and cellular potency. KMN-80 and its gem-difluoro analog KMN-159 possess high selectivity relative to other prostanoid receptors. Difluoro substitution is positioned alpha to the lactam ring carbonyl and results in KMN-159's fivefold increase in potency versus KMN-80. The two analogs exhibit electronic and conformational variations, including altered nitrogen hybridization and lactam ring puckering, that may drive the observed difluoro-associated increased potency within this four-compound series.
Asunto(s)
Alprostadil/análogos & derivados , Alprostadil/farmacología , Ácidos Heptanoicos/farmacología , Lactamas/farmacología , Pirrolidinas/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Alprostadil/metabolismo , Animales , Sitios de Unión , Células CHO , Células CACO-2 , Cricetulus , Humanos , Lactamas/síntesis química , Lactamas/metabolismo , Modelos Químicos , Simulación del Acoplamiento Molecular , Estructura Molecular , Teoría Cuántica , Subtipo EP3 de Receptores de Prostaglandina E/química , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/química , Subtipo EP4 de Receptores de Prostaglandina E/metabolismoRESUMEN
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30â mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.
Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Diinos/farmacología , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Antibacterianos/toxicidad , Proteínas Bacterianas/antagonistas & inhibidores , Cardiotoxicidad , Diinos/síntesis química , Diinos/farmacocinética , Diinos/toxicidad , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/toxicidad , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/toxicidad , Masculino , Estructura Molecular , Profármacos/síntesis química , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Ratas Sprague-Dawley , Relación Estructura-ActividadRESUMEN
Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/ß inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent ß-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of ß-catenin are associated with many cancers. Knockdown of GSK3α or GSK3ß individually does not increase ß-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133âGlu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3ß-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize ß-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.
Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Dipéptidos/química , Dipéptidos/metabolismo , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Células U937 , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
The Ro 60 kDa autoantigen is a major target of the immune response in patients with systemic lupus erythematosus. In vertebrate cells, Ro binds misfolded small RNAs and likely functions in RNA quality control. In eukaryotes and bacteria, Ro also associates with small RNAs called Y RNAs. We present structures of unliganded Ro and Ro complexed with two RNAs at 1.95 and 2.2 A resolution, respectively. Ro consists of a von Willebrand factor A domain and a doughnut-shaped domain composed of HEAT repeats. In the complex, a fragment of Y RNA binds on the outer surface of the HEAT-repeat ring, and single-stranded RNA binds in the toroid hole. Mutagenesis supports a binding site for misfolded RNAs that encompasses both sites, with a single-stranded end inserted into the toroid cavity. Our experiments suggest that one role of Y RNAs may be to regulate access of other RNAs to Ro.
Asunto(s)
Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Células Cultivadas , Cristalografía por Rayos X , Insectos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , ARN/química , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Xenopus laevisRESUMEN
1-l-myo-Inositol-1-phosphate synthase catalyzes the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate (MIP), the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, intramolecular aldol cyclization, and reduction. We have determined the first crystal structure of MIP synthase. We present structures of both the NAD-bound enzyme and the enzyme bound to an inhibitor, 2-deoxy-glucitol-6-phosphate. While 58 amino acids are disordered in the unbound form of the enzyme in the vicinity of the active site, the inhibitor nucleates the folding of this domain in a striking example of induced fit, serving to completely encapsulate it within the enzyme. Three helices and a long beta-strand are formed in this process. We postulate a mechanism for the conversion based on the structure of the inhibitor-bound complex.