Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Exp Biol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211959

RESUMEN

While temperature fluctuations pose significant challenges to the nervous system, many vital neuronal systems in poikilothermic animals function over a broad temperature range. Using the gastric mill pattern generator in the Jonah crab, we previously demonstrated that temperature-induced increases in leak conductance disrupt neuronal function and that neuropeptide modulation provides thermal protection. Here, we show that neuropeptide modulation also increases temperature robustness in Dungeness and Green crabs. Like in Jonah crabs, higher temperatures increased leak conductance in both species' pattern-generating neuron LG and terminated rhythmic gastric mill activity. Likewise, increasing descending modulatory projection neuron activity or neuropeptide transmitter application rescued rhythms at elevated temperatures. However, decreasing input resistance using dynamic clamp only restored the rhythm in half of the experiments. Thus, neuropeptide modulation increased temperature robustness in both species, demonstrating that neuropeptide-mediated temperature compensation is not limited to one species, although the underlying cellular compensation mechanisms may be distinct.

2.
Ann Hematol ; 102(11): 3083-3090, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37358640

RESUMEN

Idelalisib in combination with rituximab is an efficacious treatment for patients suffering from chronic lymphocytic leukemia (CLL) with known limitations due to toxicities. However, the benefit after prior Bruton tyrosine kinase inhibitor (BTKi) therapy remains unclear. For this analysis, 81 patients included in a non-interventional registry study of the German CLL study group (registered at www.clinicaltrials.gov as # NCT02863692) meeting the predefined criteria of a confirmed diagnosis of CLL and being treated with idelalisib containing regimens outside clinical trials were considered. 11 patients were treatment naïve (13.6%) and 70 patients (86.4%) pretreated. Patients had median of one prior therapy line (range 0-11). Median treatment duration with idelalisib was 5.1 months (range 0-55.0 months). Of 58 patients with documented treatment outcome, 39 responded to idelalisib containing therapy (67.2%). Patients treated with the BTKi ibrutinib as last prior treatment prior to idelalisib responded in 71.4% compared to a response rate of 61.9% in patients without prior ibrutinib. Median event free survival (EFS) was 15.9 months with a 16 versus 14 months EFS in patients with ibrutinib as last prior treatment or not, respectively. Median overall survival was 46.6 months. In conclusion, treatment with idelalisib appears to have a valuable impact in patients being refractory to prior ibrutinib therapy even though there are limitations in our analysis due to the low number of patients included.

3.
Chaos ; 33(3): 033109, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003818

RESUMEN

In this work, we study the interplay between chaos and noise in neuronal state transitions involving period doubling cascades. Our approach involves the implementation of a neuronal mathematical model under the action of neuromodulatory input, with and without noise, as well as equivalent experimental work on a biological neuron in the stomatogastric ganglion of the crab Cancer borealis. Our simulations show typical transitions between tonic and bursting regimes that are mediated by chaos and period doubling cascades. While this transition is less evident when intrinsic noise is present in the model, the noisy computational output displays features akin to our experimental results. The differences and similarities observed in the computational and experimental approaches are discussed.


Asunto(s)
Neuronas , Dinámicas no Lineales , Neuronas/fisiología , Ruido , Modelos Neurológicos , Potenciales de Acción/fisiología
4.
J Neurosci ; 41(36): 7607-7622, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34321314

RESUMEN

Peptide neuromodulation has been implicated to shield neuronal activity from acute temperature changes that can otherwise lead to loss of motor control or failure of vital behaviors. However, the cellular actions neuropeptides elicit to support temperature-robust activity remain unknown. Here, we find that peptide neuromodulation restores rhythmic bursting in temperature-compromised central pattern generator (CPG) neurons by counteracting membrane shunt and increasing dendritic electrical spread. We show that acutely rising temperatures reduced spike generation and interrupted ongoing rhythmic motor activity in the crustacean gastric mill CPG. Neuronal release and extrinsic application of Cancer borealis tachykinin-related peptide Ia (CabTRP Ia), a substance-P-related peptide, restored rhythmic activity. Warming led to a significant decrease in membrane resistance and a shunting of the dendritic signals in the main gastric mill CPG neuron. Using a combination of fluorescent calcium imaging and electrophysiology, we observed that postsynaptic potentials and antidromic action potentials propagated less far within the dendritic neuropil as the system warmed. In the presence of CabTRP Ia, membrane shunt decreased and both postsynaptic potentials and antidromic action potentials propagated farther. At elevated temperatures, CabTRP Ia restored dendritic electrical spread or extended it beyond that at cold temperatures. Selective introduction of the CabTRP Ia conductance using a dynamic clamp demonstrated that the CabTRP Ia voltage-dependent conductance was sufficient to restore rhythmic bursting. Our findings demonstrate that a substance-P-related neuropeptide can boost dendritic electrical spread to maintain neuronal activity when perturbed and reveals key neurophysiological components of neuropeptide actions that support pattern generation in temperature-compromised conditions.SIGNIFICANCE STATEMENT Changes in body temperature can have detrimental consequences for the well-being of an organism. Temperature-dependent changes in neuronal activity can be especially dangerous if they affect vital behaviors. Understanding how temperature changes disrupt neuronal activity and identifying how to ameliorate such effects is critically important. Our study of a crustacean circuit shows that warming disrupts rhythmic neuronal activity by increasing membrane shunt and reducing dendritic electrical spread in a key circuit neuron. Through the ionic conductance activated by it, substance-P-related peptide modulation restored electrical spread and counteracted the detrimental temperature effects on rhythmic activity. Because neuropeptides are commonly implicated in sustaining neuronal activity during perturbation, our results provide a promising mechanism to support temperature-robust activity.


Asunto(s)
Dendritas/fisiología , Neuronas/fisiología , Neuropéptidos/metabolismo , Potenciales de Acción/fisiología , Animales , Braquiuros , Calcio/metabolismo , Temperatura
5.
J Neurophysiol ; 127(3): 776-790, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35171723

RESUMEN

Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current (Ih) is critical to the function of the electrical synapse. When we blocked Ih with CsCl, the apparent voltage dependence of the electrical synapse shifted by 18.7 mV to more hyperpolarized voltages, placing the dynamic range of the electrical synapse outside of the range of voltages used by the LG motor neuron (-60.2 mV to -44.9 mV). With dual electrode current- and voltage-clamp recordings, we demonstrate that this voltage shift is not due to a change in the properties of the gap junction itself, but is a result of a sustained effect of Ih on the presynaptic MCN1 axon terminal membrane potential. Ih-induced depolarization of the axon terminal membrane potential increased the electrical postsynaptic potentials and currents. With Ih present, the axon terminal resting membrane potential is depolarized, shifting the dynamic range of the electrical synapse toward the functional range of the motor neuron. We thus demonstrate that the function of an electrical synapse is critically influenced by a voltage-dependent ionic current (Ih).NEW & NOTEWORTHY Electrical synapses and voltage-gated ionic currents are often studied independently from one another, despite mounting evidence that their interactions can alter synaptic behavior. We show that the hyperpolarization-activated inward ionic current shifts the voltage dependence of electrical synaptic transmission through its depolarizing effect on the membrane potential, enabling it to lie within the functional membrane potential range of a motor neuron. Thus, the electrical synapse's function critically depends on the voltage-gated ionic current.


Asunto(s)
Sinapsis Eléctricas , Neuronas Motoras , Potenciales de la Membrana/fisiología , Neuronas Motoras/fisiología , Transmisión Sináptica
6.
J Comput Neurosci ; 50(3): 275-298, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35441302

RESUMEN

Pyramidal cell spike block is a common occurrence in migraine with aura and epileptic seizures. In both cases, pyramidal cells experience hyperexcitation with rapidly increasing firing rates, major changes in electrochemistry, and ultimately spike block that temporarily terminates neuronal activity. In cortical spreading depression (CSD), spike block propagates as a slowly traveling wave of inactivity through cortical pyramidal cells, which is thought to precede migraine attacks with aura. In seizures, highly synchronized cortical activity can be interspersed with, or terminated by, spike block. While the identifying characteristic of CSD and seizures is the pyramidal cell hyperexcitation, it is currently unknown how the dynamics of the cortical microcircuits and inhibitory interneurons affect the initiation of hyperexcitation and subsequent spike block.We tested the contribution of cortical inhibitory interneurons to the initiation of spike block using a cortical microcircuit model that takes into account changes in ion concentrations that result from neuronal firing. Our results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. In all cases, a loss of interneuronal firing triggered pyramidal cell spike block. However, preventing interneuronal spike block was insufficient to rescue the pyramidal cell from spike block. Our data thus demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block. We discuss the implications that localized effects on cortical interneurons have beyond the isolated microcircuit and their contribution to CSD and epileptic seizures.


Asunto(s)
Depresión de Propagación Cortical , Modelos Neurológicos , Depresión de Propagación Cortical/fisiología , Humanos , Interneuronas/fisiología , Células Piramidales/fisiología , Convulsiones
7.
PLoS Biol ; 16(10): e2004527, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30321170

RESUMEN

A ubiquitous feature of the nervous system is the processing of simultaneously arriving sensory inputs from different modalities. Yet, because of the difficulties of monitoring large populations of neurons with the single resolution required to determine their sensory responses, the cellular mechanisms of how populations of neurons encode different sensory modalities often remain enigmatic. We studied multimodal information encoding in a small sensorimotor system of the crustacean stomatogastric nervous system that drives rhythmic motor activity for the processing of food. This system is experimentally advantageous, as it produces a fictive behavioral output in vitro, and distinct sensory modalities can be selectively activated. It has the additional advantage that all sensory information is routed through a hub ganglion, the commissural ganglion, a structure with fewer than 220 neurons. Using optical imaging of a population of commissural neurons to track each individual neuron's response across sensory modalities, we provide evidence that multimodal information is encoded via a combinatorial code of recruited neurons. By selectively stimulating chemosensory and mechanosensory inputs that are functionally important for processing of food, we find that these two modalities were processed in a distributed network comprising the majority of commissural neurons imaged. In a total of 12 commissural ganglia, we show that 98% of all imaged neurons were involved in sensory processing, with the two modalities being processed by a highly overlapping set of neurons. Of these, 80% were multimodal, 18% were unimodal, and only 2% of the neurons did not respond to either modality. Differences between modalities were represented by the identities of the neurons participating in each sensory condition and by differences in response sign (excitation versus inhibition), with 46% changing their responses in the other modality. Consistent with the hypothesis that the commissural network encodes different sensory conditions in the combination of activated neurons, a new combination of excitation and inhibition was found when both pathways were activated simultaneously. The responses to this bimodal condition were distinct from either unimodal condition, and for 30% of the neurons, they were not predictive from the individual unimodal responses. Thus, in a sensorimotor network, different sensory modalities are encoded using a combinatorial code of neurons that are activated or inhibited. This provides motor networks with the ability to differentially respond to categorically different sensory conditions and may serve as a model to understand higher-level processing of multimodal information.


Asunto(s)
Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Filtrado Sensorial/fisiología , Animales , Braquiuros/fisiología , Conectoma/métodos , Ganglios de Invertebrados/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Imagen Óptica/métodos , Periodicidad , Células Receptoras Sensoriales/fisiología
8.
PLoS Comput Biol ; 16(7): e1008057, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32716930

RESUMEN

Action potentials are a key component of neuronal communication and their precise timing is critical for processes like learning, memory, and complex behaviors. Action potentials propagate through long axons to their postsynaptic partners, which requires axons not only to faithfully transfer action potentials to distant synaptic regions but also to maintain their timing. This is particularly challenging when axons differ in their morphological and physiological properties, as timing is predicted to diverge between these axons when extrinsic conditions change. It is unknown if and how diverse axons maintain timing during temperature changes that animals and humans encounter. We studied whether ambient temperature changes cause different timing in the periphery of neurons that centrally produce temperature-robust activity. In an approach combining modeling, imaging, and electrophysiology, we explored mechanisms that support timing by exposing the axons of three different neuron types from the same crustacean (Cancer borealis) motor circuit and involved in the same functional task to a range of physiological temperatures. We show that despite substantial differences between axons, the effects of temperature on action potential propagation were moderate and supported temperature-robust timing over long-distances. Our modeling demonstrates that to maintain timing, the underlying channel properties of these axons do not need to be temperature-insensitive or highly restricted, but coordinating the temperature sensitivities of the Sodium activation gate time constant and the maximum Sodium conductance is required. Thus, even highly temperature-sensitive ion channel properties can support temperature-robust timing between distinct neuronal types and across long distances.


Asunto(s)
Potenciales de Acción , Axones/fisiología , Crustáceos/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Algoritmos , Animales , Biología Computacional , Simulación por Computador , Masculino , Modelos Neurológicos , Conducción Nerviosa , Temperatura
9.
J Undergrad Neurosci Educ ; 19(1): A36-A51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33880091

RESUMEN

The number of undergraduate researchers interested in pursuing neurophysiological research exceeds the research laboratory positions and hands-on course experiences available because these types of experiments often require extensive experience or expensive equipment. In contrast, genetic and molecular tools can more easily incorporate undergraduates with less time or training. With the explosion of newly sequenced genomes and transcriptomes, there is a large pool of untapped molecular and genetic information which would greatly inform neurophysiological processes. Classically trained neurophysiologists often struggle to make use of newly available genetic information for themselves and their trainees, despite the clear advantage of combining genetic and physiological techniques. This is particularly prevalent among researchers working with organisms that historically had no or only few genetic tools available. Combining these two fields will expose undergraduates to a greater variety of research approaches, concepts, and hands-on experiences. The goal of this manuscript is to provide an easily understandable and reproducible workflow that can be applied in both lab and classroom settings to identify genes involved in neuronal function. We outline clear learning objectives that can be acquired by following our workflow and assessed by peer-evaluation. Using our workflow, we identify and validate the sequence of two new Gamma Aminobutyric Acid A (GABAA) receptor subunit homologs in the recently published genome and transcriptome of the marbled crayfish, Procambarus virginalis. Altogether, this allows undergraduate students to apply their knowledge of the processes of gene expression to functional neuronal outcomes. It also provides them with opportunities to contribute significantly to physiological research, thereby exposing them to interdisciplinary approaches.

10.
PLoS Biol ; 13(9): e1002265, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417944

RESUMEN

Stable rhythmic neural activity depends on the well-coordinated interplay of synaptic and cell-intrinsic conductances. Since all biophysical processes are temperature dependent, this interplay is challenged during temperature fluctuations. How the nervous system remains functional during temperature perturbations remains mostly unknown. We present a hitherto unknown mechanism of how temperature-induced changes in neural networks are compensated by changing their neuromodulatory state: activation of neuromodulatory pathways establishes a dynamic coregulation of synaptic and intrinsic conductances with opposing effects on neuronal activity when temperature changes, hence rescuing neuronal activity. Using the well-studied gastric mill pattern generator of the crab, we show that modest temperature increase can abolish rhythmic activity in isolated neural circuits due to increased leak currents in rhythm-generating neurons. Dynamic clamp-mediated addition of leak currents was sufficient to stop neuronal oscillations at low temperatures, and subtraction of additional leak currents at elevated temperatures was sufficient to rescue the rhythm. Despite the apparent sensitivity of the isolated nervous system to temperature fluctuations, the rhythm could be stabilized by activating extrinsic neuromodulatory inputs from descending projection neurons, a strategy that we indeed found to be implemented in intact animals. In the isolated nervous system, temperature compensation was achieved by stronger extrinsic neuromodulatory input from projection neurons or by augmenting projection neuron influence via bath application of the peptide cotransmitter Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). CabTRP Ia activates the modulator-induced current IMI (a nonlinear voltage-gated inward current) that effectively acted as a negative leak current and counterbalanced the temperature-induced leak to rescue neuronal oscillations. Computational modelling revealed the ability of IMI to reduce detrimental leak-current influences on neuronal networks over a broad conductance range and indicated that leak and IMI are closely coregulated in the biological system to enable stable motor patterns. In conclusion, these results show that temperature compensation does not need to be implemented within the network itself but can be conditionally provided by extrinsic neuromodulatory input that counterbalances temperature-induced modifications of circuit-intrinsic properties.


Asunto(s)
Braquiuros/fisiología , Generadores de Patrones Centrales/fisiología , Temperatura , Animales , Membrana Celular/fisiología , Digestión , Periodicidad
11.
J Neurosci ; 36(25): 6718-31, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27335403

RESUMEN

UNLABELLED: Essential to understanding the process of neuronal signal integration is the knowledge of where within a neuron action potentials (APs) are generated. Recent studies support the idea that the precise location where APs are initiated and the properties of spike initiation zones define the cell's information processing capabilities. Notably, the location of spike initiation can be modified homeostatically within neurons to adjust neuronal activity. Here we show that this potential mechanism for neuronal plasticity can also be exploited in a rapid and dynamic fashion. We tested whether dislocation of the spike initiation zone affects signal integration by studying ectopic spike initiation in the anterior gastric receptor neuron (AGR) of the stomatogastric nervous system of Cancer borealis Like many other vertebrate and invertebrate neurons, AGR can generate ectopic APs in regions distinct from the axon initial segment. Using voltage-sensitive dyes and electrophysiology, we determined that AGR's ectopic spike activity was consistently initiated in the neuropil region of the stomatogastric ganglion motor circuits. At least one neurite branched off the AGR axon in this area; and indeed, we found that AGR's ectopic spike activity was influenced by local motor neurons. This sensorimotor interaction was state-dependent in that focal axon modulation with the biogenic amine octopamine, abolished signal integration at the primary spike initiation zone by dislocating spike initiation to a distant region of the axon. We demonstrate that the site of ectopic spike initiation is important for signal integration and that axonal neuromodulation allows for a dynamic adjustment of signal integration. SIGNIFICANCE STATEMENT: Although it is known that action potentials are initiated at specific sites in the axon, it remains to be determined how the precise location of action potential initiation affects neuronal activity and signal integration. We addressed this issue by studying ectopic spiking in the axon of a single-cell sensory neuron in the stomatogastric nervous system. Action potentials were consistently initiated at a specific region of the axon trunk, near a motor neuropil. Spike frequency was regulated by motor neuron activity, but only if spike initiation occurred at this location. Neuromodulation of the axon dislocated the site of initiation, resulting in abolishment of signal integration from motor neurons. Thus, neuromodulation allows for a dynamic adjustment of axonal signal integration.


Asunto(s)
Potenciales de Acción/fisiología , Red Nerviosa/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Animales , Axones/fisiología , Braquiuros , Ganglios de Invertebrados/citología , Luz , Masculino , Conducción Nerviosa/fisiología , Células Receptoras Sensoriales/citología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje
12.
J Exp Biol ; 218(Pt 24): 3950-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26519507

RESUMEN

The mechanisms of rhythmic motor pattern generation have been studied in detail in vitro, but the long-term stability and sources of variability in vivo are often not well described. The crab stomatogastric ganglion contains the well-characterized gastric mill (chewing) and pyloric (filtering of food) central pattern generators. In vitro, the pyloric rhythm is stereotyped with little variation, but inter-circuit interactions and neuromodulation can alter both rhythm cycle frequency and structure. The range of variation of activity in vivo is, with few exceptions, unknown. Curiously, although the pattern-generating circuits in vivo are constantly exposed to hormonal and neural modulation, the majority of published data show only the unperturbed canonical motor patterns typically observed in vitro. Using long-term extracellular recordings (N=27 animals), we identified the range and sources of variability of the pyloric and gastric mill rhythms recorded continuously over 4 days in freely behaving Jonah crabs (Cancer borealis). Although there was no evidence of innate daily rhythmicity, a 12 h light-driven cycle did manifest. The frequency of both rhythms increased modestly, albeit consistently, during the 3 h before and 3 h after the lights changed. This cycle was occluded by sensory stimulation (feeding), which significantly influenced both pyloric cycle frequency and structure. This was the only instance where the structure of the rhythm changed. In unfed animals the structure remained stable, even when the frequency varied substantially. So, although central pattern generating circuits are capable of producing many patterns, in vivo outputs typically remain stable in the absence of sensory stimulation.


Asunto(s)
Braquiuros/fisiología , Animales , Ganglios de Invertebrados/fisiología , Tracto Gastrointestinal/inervación , Luz , Masculino , Actividad Motora/fisiología , Periodicidad , Píloro/fisiología
13.
J Neurosci ; 33(29): 12013-29, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23864688

RESUMEN

In the isolated CNS, different modulatory inputs can enable one motor network to generate multiple output patterns. Thus far, however, few studies have established whether different modulatory inputs also enable a defined network to drive distinct muscle and movement patterns in vivo, much as they enable these distinctions in behavioral studies. This possibility is not a foregone conclusion, because additional influences present in vivo (e.g., sensory feedback, hormonal modulation) could alter the motor patterns. Additionally, rhythmic neuronal activity can be transformed into sustained muscle contractions, particularly in systems with slow muscle dynamics, as in the crab (Cancer borealis) stomatogastric system used here. We assessed whether two different versions of the biphasic (protraction, retraction) gastric mill (chewing) rhythm, triggered in the isolated stomatogastric system by the modulatory ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons, drive different muscle and movement patterns. One distinction between these rhythms is that the lateral gastric (LG) protractor motor neuron generates tonic bursts during the VCN rhythm, whereas its POC-rhythm bursts are divided into fast, rhythmic burstlets. Intracellular muscle fiber recordings and tension measurements show that the LG-innervated muscles retain the distinct VCN-LG and POC-LG neuron burst structures. Moreover, endoscope video recordings in vivo, during VCN-triggered and POC-triggered chewing, show that the lateral teeth protraction movements exhibit the same, distinct protraction patterns generated by LG in the isolated nervous system. Thus, the multifunctional nature of an identified motor network in the isolated CNS can be preserved in vivo, where it drives different muscle activity and movement patterns.


Asunto(s)
Conducta Animal/fisiología , Neuronas Motoras/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Red Nerviosa/fisiología , Animales , Braquiuros , Ganglios de Invertebrados/fisiología , Contracción Muscular/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología
14.
J Neurophysiol ; 111(12): 2603-13, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24671541

RESUMEN

Central-pattern-generating neural circuits function reliably throughout an animal's life, despite constant molecular turnover and environmental perturbations. Fluctuations in temperature pose a problem to the nervous systems of poikilotherms because their body temperature follows the ambient temperature, thus affecting the temperature-dependent dynamics of various subcellular components that constitute neuronal circuits. In the crustacean stomatogastric nervous system, the pyloric circuit produces a triphasic rhythm comprising the output of the pyloric dilator, lateral pyloric, and pyloric constrictor neurons. In vitro, the phase relationships of these neurons are maintained over a fourfold change in pyloric frequency as temperature increases from 7°C to 23°C. To determine whether these temperature effects are also found in intact crabs, in the presence of sensory feedback and neuromodulator-rich environments, we measured the temperature dependence of the pyloric frequency and phases in vivo by implanting extracellular electrodes into Cancer borealis and Cancer pagurus and shifting tank water temperature from 11°C to 26°C. Pyloric frequency in the intact crab increased significantly with temperature (Q10 = 2-2.5), while pyloric phases were generally conserved. For a subset of the C. borealis experiments, animals were subsequently dissected and the stomatogastric ganglion subjected to a similar temperature ramp in vitro. We found that the maximal frequency attained at high temperatures in vivo is lower than it is under in vitro conditions. Our results demonstrate that, over a wide temperature range, the phases of the pyloric rhythm in vivo are generally preserved, but that the frequency range is more restricted than it is in vitro.


Asunto(s)
Relojes Biológicos/fisiología , Braquiuros/fisiología , Ganglios de Invertebrados/fisiología , Actividad Motora/fisiología , Temperatura , Animales , Electrodos Implantados , Especificidad de la Especie , Estómago , Técnicas de Cultivo de Tejidos
15.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-38188418

RESUMEN

The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion. Like humans, the nematode C. elegans expresses PIEZO-type channels (encoded by the pezo-1 gene) throughout its somatic musculature. Here we use the unbiased automated behavioral software Tierpsy to characterize the effects that mutations removing PEZO-1 from body wall musculature have on C. elegans crawling. We find that loss of PEZO-1 results in disrupted locomotion and posture, consistent with phenotypes associated with loss of PIEZO2 in human musculature. C. elegans is thus an amenable system to study the role of mechanoreception on muscle physiology and function.

16.
Front Cell Neurosci ; 17: 1263591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920203

RESUMEN

Introduction: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. Methods: We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. Results and discussion: Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.

17.
Front Cell Neurosci ; 16: 849160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418838

RESUMEN

Acute temperature changes can disrupt neuronal activity and coordination with severe consequences for animal behavior and survival. Nonetheless, two rhythmic neuronal circuits in the crustacean stomatogastric ganglion (STG) and their coordination are maintained across a broad temperature range. However, it remains unclear how this temperature robustness is achieved. Here, we dissociate temperature effects on the rhythm generating circuits from those on upstream ganglia. We demonstrate that heat-activated factors extrinsic to the rhythm generators are essential to the slow gastric mill rhythm's temperature robustness and contribute to the temperature response of the fast pyloric rhythm. The gastric mill rhythm crashed when its rhythm generator in the STG was heated. It was restored when upstream ganglia were heated and temperature-matched to the STG. This also increased the activity of the peptidergic modulatory projection neuron (MCN1), which innervates the gastric mill circuit. Correspondingly, MCN1's neuropeptide transmitter stabilized the rhythm and maintained it over a broad temperature range. Extrinsic neuromodulation is thus essential for the oscillatory circuits in the STG and enables neural circuits to maintain function in temperature-compromised conditions. In contrast, integer coupling between pyloric and gastric mill rhythms was independent of whether extrinsic inputs and STG pattern generators were temperature-matched or not, demonstrating that the temperature robustness of the coupling is enabled by properties intrinsic to the rhythm generators. However, at near-crash temperature, integer coupling was maintained only in some animals while it was absent in others. This was true despite regular rhythmic activity in all animals, supporting that degenerate circuit properties result in idiosyncratic responses to environmental challenges.

18.
Front Physiol ; 13: 947598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874546

RESUMEN

For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the 'Receptor-mediated ovary transduction of cargo' (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.

19.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100363

RESUMEN

Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestión de Alimentos , Canales Iónicos/metabolismo , Mecanorreceptores/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
J Neurophysiol ; 105(4): 1671-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21325688

RESUMEN

Neuronal release of modulatory substances provides motor pattern generating circuits with a high degree of flexibility. In vitro studies have characterized the actions of modulatory projection neurons in great detail in the stomatogastric nervous system, a model system for neuromodulatory influences on central pattern generators. Less is known about the activities and actions of modulatory neurons in fully functional and richly modulated network settings, i.e., in intact animals. It is also unknown whether their activities contribute to the motor patterns in different behavioral conditions. Here, we show for the first time the activity and effects of the well-characterized modulatory projection neuron 1 (MCN1) in vivo and compare them to in vitro conditions. MCN1 was always spontaneously active, typically in a rhythmic fashion with its firing being interrupted by ascending inhibitions from the pyloric motor circuit. Its activity contributed to pyloric motor activity, because 1) the cycle period of the motor pattern correlated with MCN1 firing frequency and 2) stimulating MCN1 shortened the cycle period while 3) lesioning of the MCN1 axon reduced motor activity. In addition, gastric mill motor activity was elicited for the duration of the stimulation. Chemosensory stimulation of the antennae moved MCN1 away from baseline activity by increasing its firing frequency. Following this increase, a gastric mill rhythm was elicited and the pyloric cycle period decreased. Lesioning the MCN1 axon prevented these effects. Thus modulatory projection neurons such as MCN1 can control the motor output in vivo, and they participate in the processing of exteroceptive sensory information in behaviorally relevant conditions.


Asunto(s)
Braquiuros/fisiología , Ganglios de Invertebrados/fisiología , Neuronas Motoras/fisiología , Animales , Vías Nerviosas/fisiología , Píloro/inervación , Píloro/fisiología , Estómago/inervación , Estómago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA